Immune checkpoint blockade (ICB) therapy is a treatment strategy for hepatocellular carcinoma (HCC); however, its clinical efficacy is limited to a select subset of patients. Next-generation sequencing has identified the value of tumor mutation burden (TMB) as a predictor for ICB efficacy in multiple types of tumor, including HCC. Specific driver gene mutations may be indicative of a high TMB (TMB-H) and analysis of such mutations may provide novel insights into the underlying mechanisms of TMB-H and potential therapeutic strategies.
View Article and Find Full Text PDFBackground: Patient-derived organoids and xenografts (PDXs) have emerged as powerful models in functional diagnostics with high predictive power for anticancer drug response. However, limitations such as engraftment failure and time-consuming for establishing and expanding PDX models followed by testing drug efficacy, and inability to subject to systemic drug administration for ex vivo organoid culture hinder realistic and fast decision-making in selecting the right therapeutics in the clinic. The present study aimed to develop an advanced PDX model, namely MiniPDX, for rapidly testing drug efficacy to strengthen its value in personalized cancer treatment.
View Article and Find Full Text PDFQuasi-one-dimensional semiconductor nanostructure-based photodetectors show high sensitivity but suffer from slow response speed due to surface reaction. Here, we report a fast-response CdS-CdSTe-CdTe core-shell nanobelt photodetector with a rise time of 11 μs, which is the fastest among CdS based photodetectors reported previously. The improved response speed is ascribed to the suppressed possibilities of surface reaction resulting from the core-shell structure and heterojunction among the CdS, CdSTe and CdTe.
View Article and Find Full Text PDF