Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules.
View Article and Find Full Text PDFPolo-like kinase 1 (PLK1) is a crucial mitotic kinase that is implicated in various aspects of cell cycle. Many post-translational modifications have been identified on PLK1 to regulate its activation, stability, and localization. PLK1 has been shown previously to colocalize with the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT), and OGT regulates PLK1 stability.
View Article and Find Full Text PDFO-linked N-acetylglucosamine (O-GlcNAc) is the most abundant mono-saccharide modification occurring in the cytoplasm, nucleus, and mitochondria. The recent advent of mass spectrometry technology has enabled the identification of abundant O-GlcNAc transferase (OGT) substrates in diverse biological processes, such as cell cycle progression, replication, and DNA damage response. Herein we report the O-GlcNAcylation of Replication Protein A2 (RPA2), a component of the heterotrimeric RPA complex pivotal for DNA metabolism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Proc Natl Acad Sci U S A
November 2024
Killer meiotic drivers (KMDs) are selfish genetic elements that distort Mendelian inheritance by selectively killing meiotic products lacking the KMD element, thereby promoting their own propagation. Although KMDs have been found in diverse eukaryotes, only a limited number of them have been characterized at the molecular level, and their killing mechanisms remain largely unknown. In this study, we identify that a gene previously deemed essential for cell survival in the fission yeast is a single-gene KMD.
View Article and Find Full Text PDFWhile the activities of certain proteases promote proteostasis and prevent neurodegeneration-associated phenotypes, the protease cathepsin B (CTSB) enhances proteotoxicity in Alzheimer's disease (AD) model mice, and its levels are elevated in brains of AD patients. How CTSB exacerbates the toxicity of the AD-causing Amyloid β (Aβ) peptide is controversial. Using an activity-based probe, aging-altering interventions and the nematode C.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2024
The increasing need for mass spectrometric analysis of RNA molecules calls for a better understanding of their gas-phase fragmentation behaviors. In this study, we investigate the effect of terminal phosphate groups on the fragmentation spectra of RNA oligonucleotides (oligos) using high-resolution mass spectrometry (MS). Negative-ion mode collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) were carried out on RNA oligos containing a terminal phosphate group on either end, both ends, or neither end.
View Article and Find Full Text PDFGerm granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C.
View Article and Find Full Text PDFThe CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes.
View Article and Find Full Text PDFMultiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base.
View Article and Find Full Text PDFPyruvate kinase M2 (PKM2) is a central metabolic enzyme driving the Warburg effect in tumor growth. Previous investigations have demonstrated that PKM2 is subject to O-linked β-N-acetylglucosamine (O-GlcNAc) modification, which is a nutrient-sensitive post-translational modification. Here we found that unc-51 like autophagy activating kinase 1 (ULK1), a glucose-sensitive kinase, interacts with PKM2 and phosphorylates PKM2 at Ser333.
View Article and Find Full Text PDFIn bottom-up proteomics, peptide-spectrum matching is critical for peptide and protein identification. Recently, deep learning models have been used to predict tandem mass spectra of peptides, enabling the calculation of similarity scores between the predicted and experimental spectra for peptide-spectrum matching. These models follow the supervised learning paradigm, which trains a general model using paired peptides and spectra from standard data sets and directly employs the model on experimental data.
View Article and Find Full Text PDFKiller meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation.
View Article and Find Full Text PDFNeuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through liquid-liquid phase separation. Here, we find that the phase separation of Caenorhabditis elegans SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation.
View Article and Find Full Text PDFBalanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood.
View Article and Find Full Text PDFSelective macroautophagy of the endoplasmic reticulum (ER) and the nucleus, known as ER-phagy and nucleophagy, respectively, are processes whose mechanisms remain inadequately understood. Through an imaging-based screen, we find that in the fission yeast Schizosaccharomyces pombe, Yep1 (also known as Hva22 or Rop1), the ortholog of human REEP1-4, is essential for ER-phagy and nucleophagy but not for bulk autophagy. In the absence of Yep1, the initial phase of ER-phagy and nucleophagy proceeds normally, with the ER-phagy/nucleophagy receptor Epr1 coassembling with Atg8.
View Article and Find Full Text PDFEpithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells.
View Article and Find Full Text PDFWhen it comes to mass spectrometry data analysis for identification of peptide pairs linked by -hydroxysuccinimide (NHS) ester cross-linkers, search engines bifurcate in their setting of cross-linkable sites. Some restrict NHS ester cross-linkable sites to lysine (K) and protein N-terminus, referred to as K only for short, whereas others additionally include serine (S), threonine (T), and tyrosine (Y) by default. Here, by setting amino acids with chemically inert side chains such as glycine (G), valine (V), and leucine (L) as cross-linkable sites, which serves as a negative control, we show that software-identified STY-cross-links are only as reliable as GVL-cross-links.
View Article and Find Full Text PDFMass spectrometry (MS)-based analysis of RNA oligonucleotides (oligos) plays an increasingly important role in the development of RNA therapeutics and epitranscriptomics research. However, MS fragmentation behaviors of RNA oligomers are understood insufficiently. Herein, we characterized the negative-ion-mode fragmentation behaviors of 26 synthetic RNA oligos containing four to eight nucleotides using collision-induced dissociation (CID) on a high-resolution, accurate-mass instrument.
View Article and Find Full Text PDFNeuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through a liquid-liquid phase separation. Here, we find that the phase separation of SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation.
View Article and Find Full Text PDFTransient and weak protein-protein interactions are essential to many biochemical reactions, yet are technically challenging to study. Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) provides a powerful tool in the analysis of such interactions. Central to this technology are chemical cross-linkers.
View Article and Find Full Text PDFO-linked GlcNAc (O-GlcNAc) is an emerging post-translation modification that couples metabolism with cellular signal transduction by crosstalk with phosphorylation and ubiquitination to orchestrate various biological processes. The mechanisms underlying the involvement of O-GlcNAc modifications in N-methyladenosine (mA) regulation are not fully characterized. Herein, we show that O-GlcNAc modifies the mA mRNA reader YTH domain family 1 (YTHDF1) and fine-tunes its nuclear translocation by the exportin protein Crm1.
View Article and Find Full Text PDFThe spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton.
View Article and Find Full Text PDF