Publications by authors named "Meng Qi He"

Article Synopsis
  • - Hepatic ischemia-reperfusion injury (IRI) is a serious issue in liver surgeries that can lead to surgery failure and patient death, and there are currently no effective clinical prevention methods.
  • - Researchers have developed ultra-small copper-based nanoparticles with both catalase-like and superoxide dismutase-like properties that can effectively scavenge harmful reactive oxygen species (ROS), offering protection against hepatic IRI.
  • - These nanoparticles have shown better protective effects on liver cells compared to N-acetylcysteamine (NAC), an FDA-approved drug, by reducing inflammation, preventing cell death, and helping maintain liver functions.
View Article and Find Full Text PDF

Objective: Wound therapies utilizing gene delivery to the skin offer considerable promise owing to their localized treatment benefits and straightforward application. This study investigated the impact of skin electroporation of CYP1A1 shRNA lentiviral particles on diabetic wound healing in a streptozotocin (STZ)-induced rat model.

Methods: Male Sprague Dawley (SD) rats were made diabetic by injecting STZ and subsequently creating foot skin wounds.

View Article and Find Full Text PDF

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Guhan Yangshengjing (GHYSJ) is an effective prescription for delaying progression of Alzheimer's disease (AD) based on the ancient Chinese medical classics excavated from Mawangdui Han Tomb. Comprising a combination of eleven traditional Chinese herbs, the precise protective mechanism through which GHYSJ acts on AD progression remains unclear and has significant implications for the development of new drugs to treat AD.

Aim Of The Study: To investigate the mechanism of GHYSJ in the treatment of AD through network pharmacology and validate the results through in vitro experiments.

View Article and Find Full Text PDF

The localized surface plasmon resonance (LSPR) property, depending on the structure (morphology and assembly) of nanoparticles, is very sensitive to the environmental fluctuation. Retaining the colorimetric effect derived from the LSPR property while introducing new optical properties (such as fluorescence) that provide supplementary information is an effective means to improve the controllability in structures and reproducibility in optical properties. DNA as a green and low-cost etching agent has been demonstrated to effectively control the morphology and optical properties (the blue shift of the LSPR peak) of the plasmonic nanoparticles.

View Article and Find Full Text PDF

High-entropy alloys nanoparticles (HEANPs) are receiving extensive attention due to their broad compositional tunability and unlimited potential in bioapplication. However, developing new methods to prepare ultra-small high-entropy alloy nanoparticles (US-HEANPs) faces severe challenges owing to their intrinsic thermodynamic instability. Furthermore, there are few reports on studying the effect of HEANPs in tumor therapy.

View Article and Find Full Text PDF

Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial.

View Article and Find Full Text PDF

A novel probe was synthesized with a turn-on NIR fluorescent (NIRF)/photoacoustic (PA) response to NADPH, which was successfully applied in both monitoring intracellular NADPH and dual-modal imaging of tumor-bearing mice. It exhibits good potential in studying and understanding the tumor energy metabolism and treatment process related to NADPH.

View Article and Find Full Text PDF

Ulcerative colitis(UC) is a continuous inflammatory bowel disease with the main clinical manifestations of abdominal pain, diarrhea, and mucous bloody stools, mainly attacking the colorectal mucosa and submucosa. It is characterized by high recurrence rate, difficult cure, and clustering and regional occurrence. Chinese medicinal prescriptions for the treatment of UC have good therapeutic effect, multi-target regulation, slight toxicity, and no obvious side effects.

View Article and Find Full Text PDF

To investigate the effects of betulinic acid on apoptosis of human gastric cancer SGC-7901 cells. The human gastric cancer SGC-7901cells were divided in to 4 groups, and each group was set with 3 replicates. The SGC-7901cells in control group were not treated with betulinic acid; the other 3 experimental groups were treated with betulinic acid at the concentrations of 10, 20 and 30 mg/L, respectively; each group was incubated in a 5% carbon dioxide incubator for 48 h.

View Article and Find Full Text PDF

The effects of betulinic acid (BA) on apoptosis of human gastric cancer MGC-803 cells was investigated by using human gastric cancer MGC-803 cells as experimental materials, and the basis for its clinical application was provided. The human gastric cancer MGC-803 cells were divided into 4 groups,each group was set with 3 replicates.The control group was MGC-803 cells without being added betulinic acid; the other 3 groups of experimental groups were treated with betulinic acid at final concentrations of 10, 20 and 30 μg /ml respectively.

View Article and Find Full Text PDF

To investigate the effect of betulinic acid on the proliferation of human gastric cancer MGC-803 cells Methods: Human gastric cancer MGC-803 cells were divided into 4 groups, each with 3 multiple holes. Control cells add betulinic acid at a concentration of 0 μg /ml, and the other three experimental groups were added with final concentration of 10, 20, 30 μg/ml Betulinic acid respectively. Cells in each group were incubated in a 5% CO incubator for 48 hours, and the Giemsa staining method and trypan blue exclusion method were used to detect the effect of betulinic acid on the cell clone formation rate and growth inhibition rate; EdU method and flow cytometry were used to detect cell proliferation and cell cycle changes; qRT-PCR and Western blot were used to detect the expressions of cell cycle regulators CCNB1 and CCND1.

View Article and Find Full Text PDF

In this study, human gastric cancer MGC-803 cells were treated with betulinic acid at different concentrations to investigate its effect on cell autophagy. The human gastric cancer MGC-803 cells were divided into 4 groups, each group was set with 3 replicate. The control group was not treated with betulinic acid, the other three groups were added with final concentration of 10,20,30 mg/L betulinic acid, respectively.

View Article and Find Full Text PDF

Exosomes are expected to be used as cancer biomarkers because they carry a variety of cancer-related proteins inherited from parental cells. However, it is still challenging to develop a sensitive, robust, and high-throughput technique for simultaneous detection of exosomal proteins. Herein, three aptamers specific to cancer-associated proteins (CD63, EpCAM, and HER2) are selected to connect gold nanoparticles (AuNPs) as core with three different elements (Y, Eu, and Tb) doped up-conversion nanoparticles (UCNPs) as satellites, thereby forming three nanosatellite assemblies.

View Article and Find Full Text PDF

Human gastric cancer SGC-7901 cells were treated with betulinic acid(BA)at the concentrations of 0, 10, 20, and 30 μg/ml, and treated with conventional chemotherapeutic drug 5-Fu as a positive control to explore its effect on cell proliferation. Trypan blue and GIEMSA staining method were used to investigate the effect of BA on cell growth inhibition and clone formation. EdU method and flow cytometry were used to explore the proliferation and cell cycle of SGC-7901 cells after treated with BA, respectively.

View Article and Find Full Text PDF

The chirality of biomolecules is vital importance in biosensing and biomedicine. However, most biomolecules only have a chiral response in the ultraviolet region, and the corresponding chiral signal is weak. In recent years, inorganic nanomaterials can adjust chiral light signals to the visible and near-infrared regions and enhance optical signals due to their high polarizability and adjustable morphology-dependent optical properties.

View Article and Find Full Text PDF

Systematically tuning the structures and properties of noble-metal nanoparticles through biomolecule-mediated overgrowth is of significant importance for their applications in biosensing and imaging. Herein thiolated biomolecules with different concentrations and sizes (molecular weight and spatial structure) were used as a class of capping ligands to control the longitudinal surface plasmon resonance (LSPR) property of gold nanorods (GNRs). The LSPR peaks were red-shifted by increasing the capping agent concentration.

View Article and Find Full Text PDF

Longitudinal surface plasmon resonance (LSPR)-based optical signals possess unique advantages in biomolecular sensing and detection which can be attributed to their ultrahigh sensitivity and signal-to-noise ratio. However, the lack of effective strategies for morphological control of gold nanorods (GNRs) complicates the precise tuning of their LSPR property. Herein, a "peptide-encoded" strategy was first developed to precisely control the morphologies of GNRs via overgrowth of GNR seeds in the presence of thiol-containing peptides.

View Article and Find Full Text PDF

A simple fluorescence biosensor is developed based on the enzyme-assisted cascade amplification strategy. The amplification system consists of a hairpin-structure DNA (H-DNA) and exonuclease III. The target DNA can hybridize with the H-DNA and initiate exonuclease III-assisted target recycling amplification to generate abundant G-rich DNA (G-DNA).

View Article and Find Full Text PDF

Taking advantage of the homogeneous and heterogeneous electrochemical biosensors, a simple, sensitive, and selective electrochemical biosensor is constructed by combining entropy-driven amplification (EDA) with DNA walker. This electrochemical biosensor realizes the biorecognition and EDA operation in homogeneous solution, which is beneficial to improve the recognition and amplification efficiency. A two-leg DNA walker generated by EDA can walk on the surface of gold electrode for cleaving the immobilized substrate DNA and releasing the electroactive labels, giving rise to a significant decrease of the electrochemical signal.

View Article and Find Full Text PDF

DNA can be modified to function as a scaffold for the construction of a DNA nanomachine, which can then be used in analytical applications if the DNA nanomachine can be triggered by the presence of a diagnostic DNA or some other analyte. We herein propose a novel and powerful DNA nanomachine that can detect DNA via combining the tandem strand displacement reactions and a DNA walker. Three different DNA sensing platforms are described, where the whole DNA machine was constructed on a gold electrode (GE).

View Article and Find Full Text PDF

A synthetic DNA machine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA walker biosensor for label-free detection of carcinoembryonic antigen (CEA) is developed for the first time by a novel cascade amplification strategy of exonuclease (Exo) III-assisted target recycling amplification (ERA) and DNA walker. ERA as the first stage of amplification generates the walker DNA, while the autonomous traveling of the walker DNA on the substrate-modified silica microspheres as the second stage of amplification produces an ultrasensitive fluorescent signal with the help of N-methylmesoporphyrin IX (NMM).

View Article and Find Full Text PDF

Objective: To assess the value of Prostate Imaging and Reporting and Data System: Version 2 (PI-RADS v2) combined with prostate specific antigen (PSA) in the diagnosis of peripheral zone (PZ) prostate cancer (PCa).

Methods: The preoperative magnetic resonance imaging and PSA data were ananlyzed for 69 patients with pathologically confirmed PCa and 109 non-PCa patients. PI-RADS v2 scores (1-5) was used to evaluate the risk of PZ PCa.

View Article and Find Full Text PDF

Simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. A sandwich electrochemical biosensor was developed based on polyadenine (polydA)-aptamer modified gold electrode (GE) and polydA-aptamer functionalized gold nanoparticles/graphene oxide (AuNPs/GO) hybrid for the label-free and selective detection of breast cancer cells (MCF-7) via a differential pulse voltammetry (DPV) technique. Due to the intrinsic affinity between multiple consecutive adenines of polydA sequences and gold, polydA modified aptamer instead of thiol terminated aptamer was immobilized on the surface of GE and AuNPs/GO.

View Article and Find Full Text PDF

To specifically and sensitively identify bisphenol A (BPA) with a simple and rapid method is very important for food safety. Using an anti-BPA aptamer and MoC nanotubes, we developed a label-free and low-background signal biosensor for BPA detection. The anti-BPA aptamer drastically increased the fluorescence signal of N-methylmesoporphyrin IX under an assistance of Help-DNA.

View Article and Find Full Text PDF