Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells.
View Article and Find Full Text PDFBackground & Aims: While normal human liver is thought to be generally quiescent, clonal hepatocyte expansions have been observed, though neither their cellular source nor their expansion dynamics have been determined. Knowing the hepatocyte cell of origin, and their subsequent dynamics and trajectory within the human liver will provide an important basis to understand disease-associated dysregulation.
Methods: Herein, we use in vivo lineage tracing and methylation sequence analysis to demonstrate normal human hepatocyte ancestry.
Background & Aims: Barrett's esophagus (BE) is a risk factor for esophageal adenocarcinoma but our understanding of how it evolves is poorly understood. We investigated BE gland phenotype distribution, the clonal nature of phenotypic change, and how phenotypic diversity plays a role in progression.
Methods: Using immunohistochemistry and histology, we analyzed the distribution and the diversity of gland phenotype between and within biopsy specimens from patients with nondysplastic BE and those who had progressed to dysplasia or had developed postesophagectomy BE.
In the original publication, Fig. 1 depicting the blot for EP300 in CAL51 cells (Fig. 1c) was unintentionally duplicated with that from MDA-MB-231 cells (Fig.
View Article and Find Full Text PDFThe stromal microenvironment controls response to injury and inflammation, and is also an important determinant of cancer cell behavior. However, our understanding of its modulation by miRNA (miR) and their respective targets is still sparse. Here, we identified the miR-25-93-106b cluster and two new target genes as critical drivers for metastasis and immune evasion of cancer cells.
View Article and Find Full Text PDFPurpose: We have previously described a novel pathway controlling drug resistance, epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer cells. Upstream in the pathway, three miRs (miR-106b, miR-93 and miR-25) target EP300, a transcriptional activator of E-cadherin. Upregulation of these miRs leads to the downregulation of EP300 and E-cadherin with initiation of an EMT.
View Article and Find Full Text PDFThe Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer.
View Article and Find Full Text PDFThe introduction of next generation sequencing methods in genome studies has made it possible to shift research from a gene-centric approach to a genome wide view. Although methods and tools to detect single nucleotide polymorphisms are becoming more mature, methods to identify and visualize structural variation (SV) are still in their infancy. Most genome browsers can only compare a given sequence to a reference genome; therefore, direct comparison of multiple individuals still remains a challenge.
View Article and Find Full Text PDFCancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states.
View Article and Find Full Text PDFPancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates.
View Article and Find Full Text PDFMultiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated.
View Article and Find Full Text PDFAll cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer.
View Article and Find Full Text PDFWe here report identification and characterization of required for cell differentiation 1 homolog (RQCD1) as a potential therapeutic target for breast cancer. Gene-expression profiling analysis of breast cancer cells, semi-quantitative RT-PCR, Northern blotting and Western blotting confirmed RQCD1 to be frequently up-regulated in breast cancer specimens and breast cancer cell lines. On the other hand, its expression was very weak or hardly detectable in normal human tissues except testis, indicating this molecule to be a novel cancer-testis antigen.
View Article and Find Full Text PDFBreast cancer is known to be a hormone-dependent disease, and estrogens through an interaction with estrogen receptor (ER) enhance the proliferative and metastatic activity of breast tumor cells. Here we show a critical role of transactivation of BIG3, brefeldin A-inhibited guanine nucleotide-exchange protein 3, in activation of the estrogen/ER signaling in breast cancer cells. Knocking-down of BIG3 expression with small-interfering RNA (siRNA) drastically suppressed the growth of breast cancer cells.
View Article and Find Full Text PDFThrough analysis of the detailed genome-wide gene expression profiles of 81 breast tumors, we identified a novel gene, G-patch domain containing 2 (GPATCH2), that was overexpressed in the great majority of breast cancer cases. Treatment of breast cancer cells MCF-7 and T47D with siRNA against GPATCH2 effectively suppressed its expression, and resulted in the growth suppression of cancer cells, suggesting its essential role in breast cancer cell growth. We found an interaction of GPATCH2 protein with hPrp43, an RNA-dependent ATPase.
View Article and Find Full Text PDFSomatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types.
View Article and Find Full Text PDFTo elucidate the molecular mechanisms of mammary carcinogenesis and discover novel therapeutic targets for breast cancer, we previously carried out genome-wide expression profile analysis of 81 breast cancer cases by means of cDNA microarray coupled with laser microbeam microdissection of cancer cells. Among the dozens of transactivated genes, in the present study we focused on the functional significance of kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK) in the growth of breast cancer cells. Northern blot and immunohistochemical analyses confirmed KIF2C/MCAK overexpression in breast cancer cells, and showed that it is expressed at undetectable levels in normal human tissues except the testis, suggesting KIF2C/MCAK to be a cancer-testis antigen.
View Article and Find Full Text PDFIntroduction: Cancer therapies directed at specific molecular targets in signaling pathways of cancer cells, such as tamoxifen, aromatase inhibitors and trastuzumab, have proven useful for treatment of advanced breast cancers. However, increased risk of endometrial cancer with long-term tamoxifen administration and of bone fracture due to osteoporosis in postmenopausal women undergoing aromatase inhibitor therapy are recognized side effects. These side effects as well as drug resistance make it necessary to search for novel molecular targets for drugs on the basis of well-characterized mechanisms of action.
View Article and Find Full Text PDFBreast cancer is one of the most common cancers among women. To discover molecular targets that are applicable for development of novel breast cancer therapy, we previously did genome-wide expression profile analysis of 81 breast cancers and found dozens of genes that were highly and commonly up-regulated in breast cancer cells. Among them, we here focused on one gene that encodes PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), including a kinase domain.
View Article and Find Full Text PDF