Underwater target detection techniques have been extensively applied to underwater vehicles for marine surveillance, aquaculture, and rescue applications. However, due to complex underwater environments and insufficient training samples, the existing underwater target recognition algorithm accuracy is still unsatisfactory. A long-term effort is essential to improving underwater target detection accuracy.
View Article and Find Full Text PDFUnderwater marine object detection, as one of the most fundamental techniques in the community of marine science and engineering, has been shown to exhibit tremendous potential for exploring the oceans in recent years. It has been widely applied in practical applications, such as monitoring of underwater ecosystems, exploration of natural resources, management of commercial fisheries, etc. However, due to complexity of the underwater environment, characteristics of marine objects, and limitations imposed by exploration equipment, detection performance in terms of speed, accuracy, and robustness can be dramatically degraded when conventional approaches are used.
View Article and Find Full Text PDFAlzheimer's Disease (AD) is a neurological brain disorder that causes dementia and neurological dysfunction, affecting memory, behavior, and cognition. Deep Learning (DL), a kind of Artificial Intelligence (AI), has paved the way for new AD detection and automation methods. The DL model's prediction accuracy depends on the dataset's size.
View Article and Find Full Text PDFThis article reports our study on a reduced adaptive fuzzy decoupling control for our lower limb exoskeleton system which typically is a multi-input-multi-output (MIMO) uncertain nonlinear system. To show the applicability and generality of the proposed control methods, a more general MIMO uncertain nonlinear system model is considered. By decoupling control, the entire MIMO system is separated into several MISO subsystems.
View Article and Find Full Text PDFIn this paper, the event-triggered consensus problem of linear multiagent systems with time-varying communication delays is addressed. Different from the existing event-triggered consensus results with communication delays, more general nonuniform time-varying communication delays are considered. To avoid the asynchronous phenomenon caused by nonuniform delays, a novel periodic switching controller is developed.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
August 2018
In this paper, for a general class of uncertain nonlinear (cascade) systems, including unknown dynamics, which are not feedback linearizable and cannot be solved by existing approaches, an innovative adaptive approximation-based regulation control (AARC) scheme is developed. Within the framework of adding a power integrator (API), by deriving adaptive laws for output weights and prediction error compensation pertaining to single-hidden-layer feedforward network (SLFN) from the Lyapunov synthesis, a series of SLFN-based approximators are explicitly constructed to exactly dominate completely unknown dynamics. By the virtue of significant advancements on the API technique, an adaptive API methodology is eventually established in combination with SLFN-based adaptive approximators, and it contributes to a recursive mechanism for the AARC scheme.
View Article and Find Full Text PDFIEEE Trans Cybern
October 2017
Multidocument summarization has gained popularity in many real world applications because vital information can be extracted within a short time. Extractive summarization aims to generate a summary of a document or a set of documents by ranking sentences and the ranking results rely heavily on the quality of sentence features. However, almost all previous algorithms require hand-crafted features for sentence representation.
View Article and Find Full Text PDFExisting extreme learning algorithm have not taken into account four issues: 1) complexity; 2) uncertainty; 3) concept drift; and 4) high dimensionality. A novel incremental type-2 meta-cognitive extreme learning machine (ELM) called evolving type-2 ELM (eT2ELM) is proposed to cope with the four issues in this paper. The eT2ELM presents three main pillars of human meta-cognition: 1) what-to-learn; 2) how-to-learn; and 3) when-to-learn.
View Article and Find Full Text PDFIt is well known that the architecture of the extreme learning machine (ELM) significantly affects its performance and how to determine a suitable set of hidden neurons is recognized as a key issue to some extent. The leave-one-out cross-validation (LOO-CV) is usually used to select a model with good generalization performance among potential candidates. The primary reason for using the LOO-CV is that it is unbiased and reliable as long as similar distribution exists in the training and testing data.
View Article and Find Full Text PDFIn this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.
View Article and Find Full Text PDFThis paper investigates an adaptive sampling rate control scheme for networked control systems (NCSs) subject to packet disordering. The main objectives of the proposed scheme are (a) to avoid heavy packet disordering existing in communication networks and (b) to stabilize NCSs with packet disordering, transmission delay and packet loss. First, a novel sampling rate control algorithm based on statistical characteristics of disordering entropy is proposed; secondly, an augmented closed-loop NCS that consists of a plant, a sampler and a state-feedback controller is transformed into an uncertain and stochastic system, which facilitates the controller design.
View Article and Find Full Text PDFIn this paper, an extreme learning control (ELC) framework using the single-hidden-layer feedforward network (SLFN) with random hidden nodes for tracking an unmanned surface vehicle suffering from unknown dynamics and external disturbances is proposed. By combining tracking errors with derivatives, an error surface and transformed states are defined to encapsulate unknown dynamics and disturbances into a lumped vector field of transformed states. The lumped nonlinearity is further identified accurately by an extreme-learning-machine-based SLFN approximator which does not require a priori system knowledge nor tuning input weights.
View Article and Find Full Text PDFIn this paper, the motion dynamics of a large tanker is modeled by the generalized ellipsoidal function-based fuzzy neural network (GEBF-FNN). The reference model of tanker motion dynamics in the form of nonlinear difference equations is established to generate training data samples for the GEBF-FNN algorithm which begins with no hidden neuron. In the sequel, fuzzy rules associated with the GEBF-FNN-based model can be online self-constructed by generation criteria and parameter estimation, and can dynamically capture essential motion dynamics of the large tanker with high prediction accuracy.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2014
This paper proves that adaptive neural plus proportional-derivative (PD) control can lead to semiglobal asymptotic stabilization rather than uniform ultimate boundedness for a class of uncertain affine nonlinear systems. An integral Lyapunov function-based ideal control law is introduced to avoid the control singularity problem. A variable-gain PD control term without the knowledge of plant bounds is presented to semiglobally stabilize the closed-loop system.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2014
Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO).
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
June 2015
In this paper, traditional single-hidden layer feedforward network (SLFN) is extended to novel generalized SLFN (GSLFN) by employing polynomial functions of inputs as output weights connecting randomly generated hidden units with corresponding output nodes. The significant contributions of this paper are as follows: 1) a primal GSLFN (P-GSLFN) is implemented using randomly generated hidden nodes and polynomial output weights whereby the regression matrix is augmented by full or partial input variables and only polynomial coefficients are to be estimated; 2) a simplified GSLFN (S-GSLFN) is realized by decomposing the polynomial output weights of the P-GSLFN into randomly generated polynomial nodes and tunable output weights; 3) both P- and S-GSLFN are able to achieve universal approximation if the output weights are tuned by ridge regression estimators; and 4) by virtue of the developed batch and online sequential ridge ELM (BR-ELM and OSR-ELM) learning algorithms, high performance of the proposed GSLFNs in terms of generalization and learning speed is guaranteed. Comprehensive simulation studies and comparisons with standard SLFNs are carried out on real-world regression benchmark data sets.
View Article and Find Full Text PDFThis paper presents a methodology of asymptotically synchronizing two uncertain generalized Lorenz systems via a single continuous composite adaptive fuzzy controller (AFC). To facilitate controller design, the synchronization problem is transformed into the stabilization problem by feedback linearization. To achieve asymptotic tracking performance, a key property of the optimal fuzzy approximation error is exploited by the Mean Value Theorem.
View Article and Find Full Text PDFInt J Neural Syst
February 2012
In this paper, a novel efficient learning algorithm towards self-generating fuzzy neural network (SGFNN) is proposed based on ellipsoidal basis function (EBF) and is functionally equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy system. The proposed algorithm is simple and efficient and is able to generate a fuzzy neural network with high accuracy and compact structure. The structure learning algorithm of the proposed SGFNN combines criteria of fuzzy-rule generation with a pruning technology.
View Article and Find Full Text PDFInt J Neural Syst
October 2010
In this paper, an online self-organizing scheme for Parsimonious and Accurate Fuzzy Neural Networks (PAFNN), and a novel structure learning algorithm incorporating a pruning strategy into novel growth criteria are presented. The proposed growing procedure without pruning not only simplifies the online learning process but also facilitates the formation of a more parsimonious fuzzy neural network. By virtue of optimal parameter identification, high performance and accuracy can be obtained.
View Article and Find Full Text PDFNeural Netw
December 2008
In this paper, a novel approach termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL) for automatically generating Fuzzy Inference Systems (FISs) is presented. In the EDSGFQL approach, structure identification and parameter estimations of FISs are achieved via Unsupervised Learning (UL) (including Reinforcement Learning (RL)). Instead of using Supervised Learning (SL), UL clustering methods are adopted for input space clustering when generating FISs.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
August 2008
An evolutionary approach toward automatic generation of fuzzy inference systems (FISs), termed evolutionary dynamic self-generated fuzzy inference systems (EDSGFISs), is proposed in this paper. The structure and parameters of an FIS are generated through reinforcement learning, whereas an action set for training the consequents of the FIS is evolved via genetic algorithms (GAs). The proposed EDSGFIS algorithm can automatically create, delete, and adjust fuzzy rules according to the performance of the entire system, as well as evaluation of individual fuzzy rules.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2012
A general and efficient design approach using a radial basis function (RBF) neural classifier to cope with small training sets of high dimension, which is a problem frequently encountered in face recognition, is presented. In order to avoid overfitting and reduce the computational burden, face features are first extracted by the principal component analysis (PCA) method. Then, the resulting features are further processed by the Fisher's linear discriminant (FLD) technique to acquire lower-dimensional discriminant patterns.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
April 2006
This paper presents a novel illumination normalization approach for face recognition under varying lighting conditions. In the proposed approach, a discrete cosine transform (DCT) is employed to compensate for illumination variations in the logarithm domain. Since illumination variations mainly lie in the low-frequency band, an appropriate number of DCT coefficients are truncated to minimize variations under different lighting conditions.
View Article and Find Full Text PDFIEEE Trans Neural Netw
May 2005
In this paper, an efficient method for high-speed face recognition based on the discrete cosine transform (DCT), the Fisher's linear discriminant (FLD) and radial basis function (RBF) neural networks is presented. First, the dimensionality of the original face image is reduced by using the DCT and the large area illumination variations are alleviated by discarding the first few low-frequency DCT coefficients. Next, the truncated DCT coefficient vectors are clustered using the proposed clustering algorithm.
View Article and Find Full Text PDF