Publications by authors named "Mendy Black"

Article Synopsis
  • The voltage-gated sodium channel subunit β4 (SCN4B) is known to influence neuronal activity and has been linked to alcohol consumption, but its specific role in ethanol-related behaviors is unclear.
  • Researchers conducted experiments by knocking out SCN4B in mice to see if it affected their drinking behavior and responses to ethanol, using various consumption tests, but found no significant differences in ethanol intake between the knockout and wild-type mice.
  • However, SCN4B knockout mice exhibited heightened sensitivity to the sedative effects of ethanol, showing longer loss of reflexes and slower recovery after exposure, indicating a role of SCN4B in the acute effects of ethanol rather than its consumption.
View Article and Find Full Text PDF

Background: In our companion article, we examined the role of MyD88-dependent signaling in ethanol (EtOH) consumption in mice lacking key components of this inflammatory pathway and observed differential effects on drinking. Here, we studied the role of these same signaling components in the acute sedative, intoxicating, and physiological effects of EtOH. Toll-like receptor 4 (TLR4) has been reported to strongly reduce the duration of EtOH-induced sedation, although most studies do not support its direct involvement in EtOH consumption.

View Article and Find Full Text PDF

Background: Molecular and behavioral studies support a role for innate immune proinflammatory pathways in mediating the effects of alcohol. Increased levels of Toll-like receptors (TLRs) have been observed in animal models of alcohol consumption and in human alcoholics, and many of these TLRs signal via the MyD88-dependent pathway. We hypothesized that this pathway is involved in alcohol drinking and examined some of its key signaling components.

View Article and Find Full Text PDF

Proinflammatory pathways in neuronal and non-neuronal cells are implicated in the acute and chronic effects of alcohol exposure in animal models and humans. The nuclear factor-κB (NF-κB) family of DNA transcription factors plays important roles in inflammatory diseases. The kinase IKKβ mediates the phosphorylation and subsequent proteasomal degradation of cytosolic protein inhibitors of NF-κB, leading to activation of NF-κB.

View Article and Find Full Text PDF

Background: Several peroxisome proliferator-activated receptor (PPAR) agonists reduce voluntary alcohol consumption in rodent models, and evidence suggests that PPARα and γ subunits play an important role in this effect. To define the subunit dependence of this action, we tested selective PPARα and α/γ agonists and antagonists in addition to null mutant mice lacking PPARα.

Methods: The effects of fenofibrate (PPARα agonist) and tesaglitazar (PPARα/γ agonist) on continuous and intermittent 2-bottle choice drinking tests were examined in male and female wild-type mice and in male mice lacking PPARα.

View Article and Find Full Text PDF

Background: In the accompanying article, we showed that activation of peroxisome proliferator-activated receptor alpha (PPARα) signaling by fenofibrate and tesaglitazar decreases ethanol (EtOH) consumption in mice. In this study, we determined the role of these PPAR agonists in EtOH-related behaviors and other actions that may be important in regulating EtOH consumption.

Methods: The effects of fenofibrate (150 mg/kg) and tesaglitazar (1.

View Article and Find Full Text PDF

Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal.

View Article and Find Full Text PDF

Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse.

View Article and Find Full Text PDF

Background: Peroxisome proliferator-activated receptor (PPAR) agonists reduce voluntary ethanol (EtOH) consumption in rat models and are promising therapeutics in the treatment for drug addictions. We studied the effects of different classes of PPAR agonists on chronic EtOH intake and preference in mice with a genetic predisposition for high alcohol consumption and then examined human genomewide association data for polymorphisms in PPAR genes in alcohol-dependent subjects.

Methods: Two different behavioral tests were used to measure intake of 15% EtOH in C57BL/6J male mice: 24-hour 2-bottle choice and limited access (3-hour) 2-bottle choice, drinking in the dark.

View Article and Find Full Text PDF

Some anti-inflammatory medications reduce alcohol consumption in rodent models. Inhibition of phosphodiesterases (PDE) increases cAMP and reduces inflammatory signaling. Rolipram, an inhibitor of PDE4, markedly reduced ethanol intake and preference in mice and reduced ethanol seeking and consumption in alcohol-preferring fawn-hooded rats (Hu et al.

View Article and Find Full Text PDF

GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects.

View Article and Find Full Text PDF