Waste Manag
December 2024
Plastic Recovery Facilities are typically designed to process a specific, predetermined mix of plastic in the infeed. However, in many cases, the composition of the infeed varies seasonally and regionally. These variations may result in bottlenecks within sorting machines, thereby causing inconsistencies in the quality and quantity of recovered material.
View Article and Find Full Text PDFDespite the increasing popularity of the circular economy, there remains a lack of consensus on how to quantify circularity, a critical aspect of the practical implementation of this model. To address this gap, this article examines the industry's perspective and efforts toward implementing the circular economy in real-world scenarios. We conducted 40 interviews with engineers, project leaders, and top-level managers in the Australian construction sector.
View Article and Find Full Text PDFThis review focuses on recent advances in concrete durability using graphene oxide (GO) as a nanomaterial additive, with a goal to fill the gap between concrete technology, chemical interactions, and concrete durability, whilst providing insights for the adaptation of GO as an additive in concrete construction. An overview of concrete durability applications, key durability failure mechanisms of concrete, transportation mechanisms, chemical reactions involved in compromising durability, and the chemical alterations within a concrete system are discussed to understand how they impact the overall durability of concrete. The existing literature on the durability and chemical resistance of GO-reinforced concrete and mortar was reviewed and summarized.
View Article and Find Full Text PDFIrritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder that has a significant impact on the general population. The suboptimal medical treatments available for IBS contribute to its large economic burden. The pathophysiology of IBS is complex, and treatments often focus on managing specific symptoms.
View Article and Find Full Text PDFThis study critically reviews lithium slag (LS) as a supplementary cementitious material (SCM), thereby examining its physiochemical characteristics, mechanical properties, and durability within cementitious and geopolymer composites. The review reveals that LS's particle size distribution is comparable to fly ash (FA) and ground granulated blast furnace slag (GGBS), which suggests it can enhance densification and nucleation in concrete. The mechanical treatment of LS promotes early hydration by increasing the solubility of aluminum, lithium, and silicon.
View Article and Find Full Text PDFImmobilization material has slowly revolutionized since 3000 BCE from traditional plaster to modern day synthetic casting tape, including other sustainable immobilization material. This revolution is driven by the search for superior casting material that possesses excellent mechanical and load-bearing properties, non-toxicity, excellent healing rates, patient satisfaction and eco friendliness. Even though the new materials have been evolved, the traditional plaster still remains a material of choice owing to its excellent skin conformability, low cost and availability.
View Article and Find Full Text PDFThis review presents the research conducted to date in the field of cement-based composites reinforced with waste paper-based cellulose fibres, focusing on their composition, mechanical properties, and durability characteristics. The literature demonstrates that the properties of raw material (depending on their own chemical composition) significantly influence the formation of the cement composite binders. When considering fresh properties, the presence of silica and magnesium compounds generally lead to favourable effects on the setting of the cement composite when combined with waste paper cellulose fibre.
View Article and Find Full Text PDFThe combination of helium charge transfer dissociation mass spectrometry (He-CTD-MS) with ultrahigh performance liquid chromatography (UHPLC) is presented for the analysis of a complex mixture of acidic and neutral human milk oligosaccharides (HMOs). The research focuses on the identification of the monosaccharide sequence, the branching patterns, the sialylation/fucosylation arrangements, and the differentiation of isomeric oligosaccharides in the mixture. Initial studies first optimized the conditions for the UHPLC separation and the He-CTD-MS conditions.
View Article and Find Full Text PDFResearch in natural products (NPs) has gained interest as drug developers turn to nature to combat problems with drug resistance, drug delivery, and emerging diseases. Whereas NPs offer a tantalizing source of new pharmacologically active compounds, their structural complexity presents a challenge for analytical characterization and organic synthesis. Of particular concern is the characterization of cyclic-, polycyclic-, or macrocyclic compounds.
View Article and Find Full Text PDFIncorporating recycled plastic waste in concrete manufacturing is one of the most ecologically and economically sustainable solutions for the rapid trends of annual plastic disposal and natural resource depletion worldwide. This paper comprehensively reviews the literature on engineering performance of recycled high-density polyethylene (HDPE) incorporated in concrete in the forms of aggregates or fiber or cementitious material. Optimum 28-days' compressive and flexural strength of HDPE fine aggregate concrete is observed at HDPE-10 and splitting tensile strength at HDPE-5 whereas for HDPE coarse aggregate concrete, within the range of 10% to 15% of HDPE incorporation and at HDPE-15, respectively.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2021
It is known that weight-bearing exercises under Ilizarov circular fixators (ICF) could enhance bone fracture healing by mechano-regulation. However, interfragmentary movements at the fracture site induced by weight-bearing may inhibit angiogenesis and ultimately delay the healing process. To tackle this challenge, a computational model is presented in this study which considers the spatial and temporal changes in mechanical properties of fracture callus to predict optimal levels of weight-bearing during fracture healing under ICF.
View Article and Find Full Text PDFUltra-high-performance liquid chromatography (UHPLC) with charge transfer dissociation mass spectrometry (CTD-MS) is presented for the analysis of a mixture of complex sulfated oligosaccharides. The mixture contained kappa (κ), iota (ι), and lambda (λ) carrageenans that contain anhydro bridges, different degrees of sulfation ranging from one to three per dimer, different positioning of the sulfate groups along the backbone, and varying degrees of polymerization (DP) between 4 and 12. Optimization studies using standard mixtures of carrageenans helped establish the optimal conditions for online UHPLC-CTD-MS/MS analysis.
View Article and Find Full Text PDFRecently, there has been a growing interest in utilizing computational fluid dynamics (CFD) for wind resistant design of tall buildings. A key factor that influences the accuracy and computational expense of CFD simulations is the size of the computational domain. In this paper, the effect of the computational domain on CFD predictions of wind loads on tall buildings is investigated with a series of sensitivity studies.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
July 2021
Bone fracture treatments using Ilizarov circular fixator (ICF) involve dealing with uncertainties about a range of critical factors that control the mechanical microenvironment of the fracture site such as ICF configuration, fracture gap size, physiological loading etc. To date, the effects of the uncertainties about these critical factors on the mechanical microenvironment of the fracture site have not been fully understood. The purpose of this study is to tackle this challenge by using computational modelling in conjunction with engineering reliability analysis.
View Article and Find Full Text PDFCharge transfer dissociation mass spectrometry (CTD-MS) has been shown to induce high energy fragmentation of biological ions in the gas phase and provide fragmentation spectra similar to extreme ultraviolet photodissociation (XUVPD). To date, CTD has typically employed helium cations with kinetic energies between 4-10 keV to initiate radical-directed fragmentation of analytes. However, as a reagent, helium has recently been listed as a critical mineral that is becoming scarcer and more expensive, so this study explored the potential for using cheaper and more readily available reagent gases.
View Article and Find Full Text PDFThis work is part of a project on the development of a smart prefabricated sanitising chamber (SPSC) to provide extra measures against the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Stabilised hypochlorous acid (HOCl) is an approved disinfectant against SARS-CoV-2 by the Environmental Protection Association US in its liquid form on non-porous surfaces. This review is extended to cover its viricidal/bactericidal efficacy in aerosolised or sprayed form which showed an effective dose of as low as 20 ppm and the exposure duration of at least 60 s.
View Article and Find Full Text PDFPectins are natural polysaccharides made from galacturonic acid residues, and they are widely used as an excipient in food and pharmaceutical industries. The degree of methyl-esterification, the monomeric composition, and the linkage pattern are all important factors that influence the physical and chemical properties of pectins, such as the solubility. This work focuses on the successful online coupling of charge transfer dissociation-mass spectrometry (CTD-MS) with ultrahigh-performance liquid chromatography (UHPLC) to differentiate isomers of oligogalacturonans derived from citrus pectins.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) participate in a broad range of physiological processes, and their structures are of interest to researchers in structural biology and medicine. Although they are abundant in tissues and extracellular matrices, their structural heterogeneity makes them challenging analytes. Mass spectrometry, and more specifically, tandem mass spectrometry, is particularly well suited for their analysis.
View Article and Find Full Text PDFRecently, there has been a growing interest in utilizing computational fluid dynamics (CFD) for wind analysis of tall buildings. A key factor that influences the accuracy of CFD simulations in urban environments is the homogeneity of the atmospheric boundary layer (ABL). This paper aims to investigate solution inaccuracies in CFD simulations of tall buildings that are due to ABL inhomogeneity.
View Article and Find Full Text PDFThe transversely isotropic behaviour of thermal sprayed aluminium and zinc coating has been investigated based on a combination of nanoindentation experimental data and microporomechanics theory. A recently developed strength homogenisation approach comprises of the solid and porous medium is adopted to investigate the morphology properties of thermal sprayed aluminum and zinc coating. The finding of this paper demonstrates that the individual aluminum and zinc phases in the coating have a characteristic packing density close to the theoretical highest spherical packing ratio for face-centred cubic and hexagonal close packed.
View Article and Find Full Text PDFAn estimation of the strength of composite materials with different strength behaviours of the matrix and inclusion is of great interest in science and engineering disciplines. Linear comparison composite (LCC) is an approach introduced for estimating the macroscopic strength of matrix-inclusion composites. The LCC approach has however not been expanded to model non-porous composites.
View Article and Find Full Text PDFThe determination of elastic modulus () and hardness () relies on the accuracy of the contact area under the indenter tip, but this parameter cannot be explicitly measured during the nanoindentation process. This work presents a new approach that can derive the elastic modulus () and contact depth () based on measured experiment stiffness using the continuous-stiffness-measurement (CSM) method. To achieve this, an inverse algorithm is proposed by incorporating a set of stiffness-based relationship functions that are derived from combining the dimensional analysis approach and computational simulation.
View Article and Find Full Text PDFThis paper presents a study of parameters affecting the fibre pull out capacity and strain-hardening behaviour of fibre-reinforced alkali-activated cement composite (AAC). Fly ash is a common aluminosilicate source in AAC and was used in this study to create fly ash based AAC. Based on a numerical study using Taguchi's design of experiment (DOE) approach, the effect of parameters on the fibre pull out capacity was identified.
View Article and Find Full Text PDFTo address sustainability issues by facilitating the use of high-volume fly ash (HVFA) concrete in industry, this paper investigates the early age hydration properties of HVFA binders in concrete and the correlation between hydration properties and compressive strengths of the cement pastes. A new method of calculating the chemically bound water of HVFA binders was used and validated. Fly ash (FA) types used in this study were sourced from Indonesia and Australia for comparison.
View Article and Find Full Text PDFMechanical properties of materials can be derived from the force-displacement relationship through instrumented indentation tests. Complications arise when establishing the full elastic-plastic stress-strain relationship as the accuracy depends on how the material's and indenter's parameters are incorporated. For instance, the effect of the material work-hardening phenomenon such as the pile-up and sink-in effect cannot be accounted for with simplified analytical indentation solutions.
View Article and Find Full Text PDF