Publications by authors named "Mendelowitz D"

Article Synopsis
  • - Pediatric obstructive sleep apnea can significantly impact cardiovascular health, and this study investigates how chronic intermittent hypoxia (CIH) affects neonatal cardiac responses differently in male and female rats.
  • - Male rats exposed to CIH demonstrated a significant weight loss compared to controls and showed greater changes in gene expression associated with heart metabolism, whereas females exhibited only a slight increase in respiratory drive during sleep.
  • - The research highlights critical sex-based differences in cardiac development due to CIH, suggesting that males may be at higher risk for heart issues like arrhythmia, underscoring the need to consider these differences in understanding pediatric sleep apnea outcomes.
View Article and Find Full Text PDF

This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy.

View Article and Find Full Text PDF

Serotonin or 5-hydroxytryptamine (5-HT) is a ubiquitous neuro-modulator-transmitter that acts in the central nervous system, playing a major role in the control of breathing and other physiological functions. The midbrain, pons, and medulla regions contain several serotonergic nuclei with distinct physiological roles, including regulating the hypercapnic ventilatory response, upper airway patency, and sleep-wake states. Obesity is a major risk factor in the development of sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA), recurrent closure of the upper airway during sleep, and obesity hypoventilation syndrome (OHS), a condition characterized by daytime hypercapnia and hypoventilation during sleep.

View Article and Find Full Text PDF

Mismatch between CO production (Vco) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPR+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity.

View Article and Find Full Text PDF

Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs.

View Article and Find Full Text PDF

Clinical studies have shown that oxytocin administered intranasally (IN) decreased the incidence and duration of obstructive events in patients with obstructive sleep apnea (OSA). Although the mechanisms by which oxytocin promotes these beneficial effects are unknown, one possible target of oxytocin could be the excitation of tongue-projecting hypoglossal motoneurons in the medulla, that exert central control of upper airway patency. This study tested the hypothesis that IN oxytocin enhances tongue muscle activity via the excitation of hypoglossal motoneurons projecting to tongue protrudor muscles (PMNs).

View Article and Find Full Text PDF

Background: Obstructive sleep apnea is a prevalent and poorly treated cardiovascular disease that leads to hypertension and autonomic imbalance. Recent studies that restore cardiac parasympathetic tone using selective activation of hypothalamic oxytocin neurons have shown beneficial cardiovascular outcomes in animal models of cardiovascular disease. This study aimed to determine if chemogenetic activation of hypothalamic oxytocin neurons in animals with existing obstructive sleep apnea-induced hypertension would reverse or blunt the progression of autonomic and cardiovascular dysfunction.

View Article and Find Full Text PDF

Retinal ganglion cells generate a pattern of action potentials to communicate visual information from the retina to cortical areas. Myelin, an insulating sheath, wraps axonal segments to facilitate signal propagation and when deficient, can impair visual function. Optic nerve development and initial myelination has largely been considered completed by the fifth postnatal week.

View Article and Find Full Text PDF

In this review we will briefly summarize the evidence that autonomic imbalance, more specifically reduced parasympathetic activity to the heart, generates and/or maintains many cardiorespiratory diseases and will discuss mechanisms and sites, from myocytes to the brain, that are potential translational targets for restoring parasympathetic activity and improving cardiorespiratory health.

View Article and Find Full Text PDF

The tightly localized noradrenergic neurons (NA) in the locus coeruleus (LC) are well recognized as essential for focused arousal and novelty-oriented responses, while many children with autism spectrum disorder (ASD) exhibit diminished attention, engagement and orienting to exogenous stimuli. This has led to the hypothesis that atypical LC activity may be involved in ASD. Oxytocin (OXT) neurons and receptors are known to play an important role in social behavior, pair bonding and cognitive processes and are under investigation as a potential treatment for ASD.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway due to the loss of upper airway muscle tone during sleep. OSA is highly prevalent, especially in obesity. There is no pharmacotherapy for OSA.

View Article and Find Full Text PDF

Study Objectives: Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH).

View Article and Find Full Text PDF

Objectives: This study sought to investigate the shift of leading pacemaker locations in healthy and failing mammalian hearts over the entire range of physiological heart rates (HRs), and to molecularly characterize spatial regions of spontaneous activity.

Background: A normal heartbeat originates as an action potential in a group of pacemaker cells known as the sinoatrial node (SAN), located near the superior vena cava. HRs and the anatomical site of origin of pacemaker activity in the adult heart are known to dynamically change in response to various physiological inputs, yet the mechanism of this pacemaker shift is not well understood.

View Article and Find Full Text PDF

Background: Left ventricular (LV) electrical maladaptation to increased heart rate in failing myocardium contributes to morbidity and mortality. Recently, cardiac cholinergic neuron activation reduced loss of contractile function resulting from chronic trans-aortic constriction (TAC) in rats. We hypothesized that chronic activation of cardiac cholinergic neurons would also reduce TAC-induced derangement of cardiac electrical activity.

View Article and Find Full Text PDF

Optogenetic technology has enabled unparalleled insights into cellular and organ physiology by providing exquisite temporal and spatial control of biological pathways. Here, an optogenetic approach is presented for selective activation of the intrinsic cardiac nervous system in excised perfused mouse hearts. The breeding of transgenic mice that have selective expression of channelrhodopsin in either catecholaminergic or cholinergic neurons is described.

View Article and Find Full Text PDF

Background: Activation of the oxytocin network has shown benefits in animal models of Obstructive Sleep Apnea (OSA) as well as other cardiorespiratory diseases. We sought to determine if nocturnal intranasal oxytocin administration could have beneficial effects in reducing the duration and/or frequency of obstructive events in obstructive sleep apnea subjects.

Methods: Two sequential standard "in-lab" polysomnogram (PSG) sleep studies were performed in patients diagnosed with OSA that were randomly assigned to initially receive either placebo or oxytocin (40 i.

View Article and Find Full Text PDF

We asked whether the physiological and morphologic properties of hypoglossal motor neurons (CNXII MNs) that innervate protruder or retractor tongue muscles are disrupted in neonatal mice that carry a heterozygous deletion parallel to that associated with DiGeorge/22q11.2 deletion syndrome (22q11.2DS).

View Article and Find Full Text PDF

Respiratory depression is the main cause of morbidity and mortality associated with opioids. Obesity increases opioid-related mortality, which is mostly related to comorbid obstructive sleep apnea. Naloxone, a μ-opioid receptor blocker, is an effective antidote, but it reverses analgesia.

View Article and Find Full Text PDF

This work shows long-term restoration of the hypothalamic oxytocin (OXT) network preserves OXT release, reduces mortality, cardiac inflammation, fibrosis, and improves autonomic tone and cardiac function in a model of heart failure. Intranasal administration of OXT in patients mimics the short-term changes seen in animals by increasing parasympathetic-and decreasing sympathetic-cardiac activity. This work provides the essential translational foundation to determine if approaches that mimic paraventricular nucleus (PVN) OXT neuron activation, such as safe, noninvasive, and well-tolerated intranasal administration of OXT, can be beneficial in patients with heart failure.

View Article and Find Full Text PDF

Heart failure (HF) is characterized by autonomic imbalance with sympathetic hyperactivity and loss of parasympathetic tone. Intracardiac ganglia (ICG) neurons represent the final common pathway for vagal innervation of the heart and strongly regulate cardiac functions. This study tests whether ICG cholinergic neuron activation mitigates the progression of cardiac dysfunction and reduces mortality that occurs in HF.

View Article and Find Full Text PDF

Disrupted development of oropharyngeal structures as well as cranial nerve and brainstem circuits may lead to feeding and swallowing difficulties in children with 22q11. 2 deletion syndrome (22q11DS). We previously demonstrated aspiration-based dysphagia during early postnatal life in the mouse model of 22q11DS along with disrupted oropharyngeal morphogenesis and divergent differentiation and function of cranial motor and sensory nerves.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive sleep-related losses of upper airway patency that occur most frequently during rapid eye movement (REM) sleep. Hypoglossal motoneurons play a key role in regulating upper airway muscle tone and patency during sleep. REM sleep activates GABA and glycine neurons in the ventral medulla (VM) to induce cortical desynchronization and skeletal muscle atonia during REM sleep; however, the role of this brain region in modulating hypoglossal motor activity is unknown.

View Article and Find Full Text PDF

The balance of sympathetic and parasympathetic tone provides exquisite control of heart rate and contractility and has also been shown to modulate coronary flow and inflammation. Understanding how autonomic balance is altered by cardiac disease is an active area of research, and developing new ways to control this balance provides insights into disease therapies. However, achieving acute neuron-specific stimulation of autonomic neurons can be difficult in experiments that measure the acute effects of nerve stimulation on the heart.

View Article and Find Full Text PDF

Obstructive Sleep Apnea (OSA) is a prevalent condition and a major cause of morbidity and mortality in Western Society. The loss of motor input to the tongue and specifically to the genioglossus muscle during sleep is associated with pharyngeal collapsibility and the development of OSA. We applied a novel chemogenetic method to develop a mouse model of sleep disordered breathing Our goal was to reversibly silence neuromotor input to the genioglossal muscle using an adeno-associated viral vector carrying inhibitory designer receptors exclusively activated by designer drugs AAV5-hM4Di-mCherry (DREADD), which was delivered bilaterally to the hypoglossal nucleus in fifteen C57BL/6J mice.

View Article and Find Full Text PDF