Publications by authors named "Menco B"

Objective: To investigate the presence of aquaporin (AQP) water channels 1, 2, and 3 in stratified squamous vocal fold epithelium.

Design: Immunolocalization analysis of excised ovine vocal fold epithelia.

Subjects: Sheep.

View Article and Find Full Text PDF

The sequentially activated molecules of olfactory signal-onset are mostly concentrated in the long, thin distal parts of olfactory epithelial receptor cell cilia. Is this also true for molecules of olfactory signal-termination and -regulation? G-protein receptor kinase 3 (GRK3) supposedly aids in signal desensitization at the level of odor receptors, whereas beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and phosphodiesterase (PDE) PDE1C2 are thought to do so at the level of the adenylyl cyclase, ACIII. The Na+, K(+)-2Cl(-)-cotransporter NKCC1 regulates Cl(-)-channel activity.

View Article and Find Full Text PDF

Olfactory marker protein (OMP) participates in the olfactory signal transduction pathway. This is evident from the behavioral and electrophysiological deficits of OMP-null mice, which can be reversed by intranasal infection of olfactory sensory neurons with an OMP-expressing adenovirus. Bex, brain expressed X-linked protein, has been identified as a protein that interacts with OMP.

View Article and Find Full Text PDF

Purpose: To examine age-related changes in the ultrastructure of Bruch's membrane with quick-freeze/deep-etch (QFDE) and conventional thin-section transmission electron microscopy (TEM).

Methods: Four eyes from human donors aged 27, 41, 76, and 78 years were preserved within 4 hours of death. Full-thickness tissue blocks from the macula were prepared for TEM or for QFDE.

View Article and Find Full Text PDF

Microvilli of vomeronasal organ (VNO) sensory epithelium receptor cells project into the VNO lumen. This lumen is continuous with the outside environment. Therefore, the microvilli are believed to be the subcellular sites of VNO receptor cells that interact with incoming VNO-targeted odors, including pheromones.

View Article and Find Full Text PDF

Heat shock, or stress, proteins (HSPs) are induced in response to conditions that cause protein denaturation. Activation of cellular stress responses as a protective and survival mechanism is often associated with chemical exposure. One interface between the body and the external environment and chemical or biological agents therein is the olfactory epithelium (OE).

View Article and Find Full Text PDF

The spatial and temporal expression of subunit 1 of the olfactory cyclic nucleotide-gated channel was investigated using affinity-purified anti-fusion protein antibodies. Immunoreactivity was most prominent in the ciliary layer of the olfactory epithelium, but high protein expression was also seen along the entire length of olfactory receptor neuronal axons to the level of the glomeruli. Electron microscopy showed that the long, thin distal compartments of olfactory cilia labeled more prominently than their thicker proximal segments.

View Article and Find Full Text PDF

Several studies have indicated that olfactory responses are impeded by amiloride. Therefore, it was of interest to see whether, and if so which, olfactory epithelial cellular compartments have amiloride-sensitive structures. Using ultrastructural methods that involved rapid freezing, freeze-substitution and low temperature embedding of olfactory epithelia, this study shows that, in the rat, this tissue is immunoreactive to antibodies against amiloride sensitive Na(+)-channels.

View Article and Find Full Text PDF

Using scanning electron microscopy (SEM), we encountered a new phenomenon in developing olfactory structures. A few cells with single slender processes that sprout from their cell bodies were found lying on the surface of the developing olfactory epithelium in 15 and 16 day old rat embryos. These slender processes resemble leading processes as they often have filopodia or filopodium-like structures at their distal ends.

View Article and Find Full Text PDF

A hitherto ignored microvillous cell type, distinct from microvillous supporting cells and other microvillous cell types, was encountered in olfactory and respiratory epithelia of nasal turbinates of rat fetuses, near the transition between these two epithelia. The apex of the cell resembles the apices of vestibular hair cells. The cell has a cone-shaped bundle of microvilli, resembling the complex bundle of hair-cell stereocilia, accompanied by a cilium.

View Article and Find Full Text PDF

Two different polyclonal antibodies were raised to synthetic peptides corresponding to distinct putative odour receptors of rat and mouse. Both antibodies selectively labelled olfactory cilia as seen with cryofixation and immunogold ultrastructural procedures. Regions of the olfactory organ where label was detected were consistent with those found at LM levels.

View Article and Find Full Text PDF

In situ hybridization studies from various laboratories have shown that the rat's olfactory epithelium has four distinct regions in which most putative odor receptors are located. To determine whether morphological features accompany this biochemical patterning, olfactory epithelial surfaces of rat nasal endoturbinates and septa were examined with scanning electron microscopy, placing particular emphasis on endoturbinate IIb. There was some morphological patterning at embryonic day 15 (E15), but distinct regions were not yet discernible.

View Article and Find Full Text PDF

Background: The olfactory epithelial sustentacular cells may support the survival and function of olfactory receptor neurons, but few reagents are available to mark and manipulate such cells.

Methods: Novel nasal cell-specific monoclonal antibodies were generated using whole cultured rat olfactory mucosal cells as the antigenic stimuli. They were characterized by immunostaining at the light level in rat tissues and newborn rat olfactory cell cultures, and at the electron microscopic level in adult tissues using freeze-substitution, post-embedding staining.

View Article and Find Full Text PDF

The olfactory area of the nasal cavity is lined with olfactory receptor cell cilia that come in contact with incoming odor molecules. Ultrastructural immunocytochemical studies in rodents have shown that these cilia contain all the proteins necessary to transduce the odorous message into an electrical signal that can be transmitted to the brain. These signaling proteins include putative odor receptors, GTP binding proteins, type III adenylyl cyclase and cyclic nucleotide-gated channels.

View Article and Find Full Text PDF

Two different polyclonal antibodies were raised to synthetic peptides corresponding to distinct putative odour receptors of rat and mouse. Both antibodies selectively labelled olfactory cilia as seen with cryofixation and immunogold ultrastructural procedures. Regions of the olfactory organ where label was detected were consistent with those found at LM levels.

View Article and Find Full Text PDF

The immunohistochemical localization of G alpha 9/G alpha 11 was studied in the olfactory and respiratory epithelium of two representative vertebrates, the rat and the channel catfish. Localization in the rat was found at the apical surface of cells in the epithelium and within nerve tracts in the lamina propria. Immunostaining of neuronal cilia and supporting cell microvilli was confirmed by electron microscopy.

View Article and Find Full Text PDF

Freeze-fracturing and deep-etching are a well-suited set of methods to study membrane and cytoplasmic features. Various approaches are available. Possible variables include tissue preparation, fracturing only or fracturing followed by etching, modes and materials of replication, and various ways of combining freeze-fracturing and/or deep-etching with (immuno)cytochemistry.

View Article and Find Full Text PDF

Light microscopic immunohistochemistry coupled with freeze-substitution electron microscopic immunocytochemistry was used to localize alpha-subunits of G-proteins and type III adenylyl cyclase in developing rat olfactory epithelia. Some cilia immunoreacted with antibodies to GS alpha and type III adenylyl cyclase as early as prenatal day 15 (E15; E1 = sperm-positive), but immunolabelling with antibodies to Golf alpha was not observed until E16. From then on numbers of receptor cells with immunolabelled cilia increased for all three probes.

View Article and Find Full Text PDF

Ultrastructural/immunocytochemical studies with well defined antibodies suggest that distal segments of olfactory cilia are the main sites of early events in olfactory signal transduction. Such studies also begin to provide specifics of the cytoskeletal make-up of olfactory epithelial cells, but knowledge about relationships between cytoskeletal and transduction components is still incomplete. Probes to less well defined chemical entities, but that distinctly label olfactory cilia, supporting cell microvilli and microvilli of microvillous cells, may serve as markers for further studies on olfactory signaling.

View Article and Find Full Text PDF

Thaumatin is a protein that tastes intensely sweet only to Old World monkeys and to higher primates, including man. Here we used pre-embedding ultrastructural methods to study the distribution of thaumatin in apical regions of Rhesus monkey foliate papillae, using thaumatin conjugated to 5 nm gold particles. With freeze-substitution we saw that gold-labeled thaumatin bound to an electron-opaque, sponge-like secretory substance inside the taste bud pores.

View Article and Find Full Text PDF

Binding of colloidal gold-conjugated lectins was studied in cilia and microvilli of rat olfactory and respiratory epithelia. This was done in sections of rapidly frozen, freeze-substituted specimens embedded in Lowicryl K11M or, for wheat germ agglutinin (WGA) alone, in deep-etched replicas. Olfactory dendritic endings and cilia labeled with WGA and faintly with soybean agglutinin (SBA); olfactory supporting cell microvilli bound only Dolichos biflorus agglutinin (DBA).

View Article and Find Full Text PDF

This study showed that the olfactory mucus is a highly structured extracellular matrix. Several olfactory epithelial glycoconjugates in the frog Rana pipiens were localized ultrastructurally using rapid-freeze, freeze-substitution and post-embedding (Lowicryl K11M) immunocytochemistry. Two of these conjugates were obtained from membrane preparations of olfactory cilia, the glycoproteins gp95 and olfactomedin.

View Article and Find Full Text PDF

There is a great variety in the morphological appearance of olfactory structures across the metazoan animal kingdom. Despite this variety the receptive structures themselves have a strikingly similar architecture, namely some type of elongated cellular extension that is spanned by a membrane and surrounded by mucus. These cellular extensions can either be modified primary or secondary cilia, or microvilli.

View Article and Find Full Text PDF

Electron microscopy and postembedding immunocytochemistry on rapidly frozen, freeze-substituted specimens of rat olfactory epithelia were used to study the subcellular localization of the transduction proteins Golf alpha and type III adenylyl cyclase. Antibody binding sites for both of these proteins occur in the same receptor cell compartments, the distal segments of the olfactory cilia. These segments line the boundary between organism and external environment inside the olfactory part of the nasal cavity.

View Article and Find Full Text PDF

We have identified a novel glycoprotein expressed exclusively in frog olfactory neuroepithelium, which we have named "olfactomedin". Olfactomedin is a 57-kDa glycoprotein recognized by seven monoclonal antibodies, previously shown to react solely with proteins of olfactory cilia preparations. It undergoes posttranslational modifications, including dimerization via intermolecular disulfides and attachment of complex carbohydrate moieties that contain N-acetylglucosamine and beta-D-galactoside sugars.

View Article and Find Full Text PDF