Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood.
View Article and Find Full Text PDFReduced generation of multiple motile cilia (RGMC) is a novel chronic destructive airway disease within the group of mucociliary clearance disorders with only few cases reported. Mutations in two genes, CCNO and MCIDAS, have been identified as a cause of this disease, both leading to a greatly reduced number of cilia and causing impaired mucociliary clearance. This study was designed to identify the prevalence of CCNO mutations in Israel and further delineate the clinical characteristics of RGMC.
View Article and Find Full Text PDFMulticiliated epithelial cells protect the upper and lower airways from chronic bacterial infections by moving mucus and debris outward. Congenital disorders of ciliary beating, referred to as primary ciliary dyskinesia (PCD), are characterized by deficient mucociliary clearance and severe, recurrent respiratory infections. Numerous genetic defects, most of which can be detected by transmission electron microscopy (TEM), are so far known to cause different abnormalities of the ciliary axoneme.
View Article and Find Full Text PDFStudy Question: What is the motor protein composition and function of human fallopian tube (FT) cilia?
Summary Answer: Although the motor protein composition and function of human FT cilia resemble that of respiratory cilia, females with primary ciliary dyskinesia (PCD) are not necessarily infertile.
What Is Known Already: FTs are lined with multiple motile cilia, which show a 9 + 2 ultrastructure by transmission electron microscopy. Case reports suggest an increased incidence of subfertility and ectopic pregnancy in women with PCD, a disease characterized by dysfunction of motile cilia and flagella.
Mucociliary clearance and fluid transport along epithelial surfaces are carried out by multiciliated cells (MCCs). Recently, human mutations in Cyclin O (CCNO) were linked to severe airway disease. Here, we show that Ccno expression is restricted to MCCs and the genetic deletion of Ccno in mouse leads to reduced numbers of multiple motile cilia and characteristic phenotypes of MCC dysfunction including severe hydrocephalus and mucociliary clearance deficits.
View Article and Find Full Text PDFHeterotaxy (also known as situs ambiguous) and situs inversus totalis describe disorders of laterality in which internal organs do not display their typical pattern of asymmetry. First described around 1600 by Girolamo Fabrizio, numerous case reports about laterality disorders in humans were published without any idea about the underlying cause. Then, in 1976, immotile cilia were described as the cause of a human syndrome that was previously clinically described, both in 1904 by AK Siewert and in 1933 by Manes Kartagener, as an association of situs inversus with chronic sinusitis and bronchiectasis, now commonly known as Kartagener's syndrome.
View Article and Find Full Text PDFA diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality.
View Article and Find Full Text PDFUsing a whole-exome sequencing strategy, we identified recessive CCNO (encoding cyclin O) mutations in 16 individuals suffering from chronic destructive lung disease due to insufficient airway clearance. Respiratory epithelial cells showed a marked reduction in the number of multiple motile cilia (MMC) covering the cell surface. The few residual cilia that correctly expressed axonemal motor proteins were motile and did not exhibit obvious beating defects.
View Article and Find Full Text PDFScand J Clin Lab Invest
December 1995
Zone electrophoresis of serum proteins is still widely performed as a routine procedure in clinical laboratories. It is used in the diagnosis and management of many disorders, e.g.
View Article and Find Full Text PDF