Int J Biol Macromol
November 2024
Adsorptive removal of phosphate plays a crucial role in mitigating eutrophication. Herein, the Zr/Fe embedded chitosan/alginate hydrogel bead (Zr/Fe/CS/Alg) is reported as an effective phosphate adsorbent. This polymer nanocomposite is synthesized by the in-situ reduction of the metals on the polymer matrix.
View Article and Find Full Text PDFPeroxidase memetic nanozymes with their free radical-mediated catalytic actions proved as efficacious antibacterial agents for combating bacterial resistance. Herein, nanocellulose (NC) extracted from straw was used to prepare NC/FeO/Ag peroxidase nanozyme as an antibacterial and wound healing agent. Characterization of the nanozyme with XRD, FTIR, SEM-EDX, and XPS confirmed the presence of silver NPs and the magnetite phase of iron oxide dispersed on nanocellulose.
View Article and Find Full Text PDFIndustrial effluents containing phenolic compounds are a major public health concern and thus require effective and robust remediation technologies. Although laccase-like nanozymes are generally recognized as being catalytically efficient in oxidizing phenols, their support materials often lack resilience in harsh environments. Herein, bacterial nanocellulose (BNC) was introduced as a sustainable, strong, biocompatible, and environmentally friendly biopolymer for the synthesis of a laccase-like nanozyme (BNC/Cu).
View Article and Find Full Text PDFRSC Adv
October 2023
Despite their potential for oxidation of persistent environmental pollutants, the development of rational and sustainable laccase nanozymes with efficient catalytic performance remains a challenge. Herein, fungal-produced chitosan-copper (CsCu) is proposed as a rational and sustainable bionanozyme with intrinsic laccase activity. The CsCu nanozyme was prepared by reduction of copper on chitosan extracted from sp.
View Article and Find Full Text PDFDeveloping mitigation mechanisms for eutrophication caused by the uncontrolled release of nutrients is in the interest of the scientific community. Adsorption, being operationally simple and economical with no significant secondary pollution, has proven to be a feasible technology for resource recovery. However, the utility of adsorption often lies in the availability of effective adsorbents.
View Article and Find Full Text PDFDeoxynivalenol (DON) is one of the trichothecene mycotoxin, a frequent contaminant of pig feed. Surface-enhanced Raman spectroscopy (SERS) is a fast and ultrasensitive analytical tool for point-of-need applications to identify molecular fingerprint structures at low concentrations. However, the use of SERS for analyte detection with flexible and robust structures is still challenging.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2020
The interaction of plasmonic nanoparticles with a dielectric platform gives rise to unique optical behaviors and this can be maneuvered to improve the plasmonic/SERS performances of a substrate. Herein, dielectric modified plasmonic-paper SERS substrate is developed by assembling Ag@SiO nanocubes on Fe-TiO nanosheets (NS) modified paper. The Fe-TiO NS being visible light responsive significantly alters the optical property of the paper and serves as a dielectric underlay for the Ag nanocubes.
View Article and Find Full Text PDF