The role of the focal adhesion protein kindlin-3 as a tumor suppressor and its interaction mechanisms with extracellular matrix constitute a major field of investigation to better decipher tumor progression. Besides the well-described role of kindlin-3 in integrin activation, evidence regarding modulatory functions between melanoma cells and tumor microenvironment are lacking and data are needed to understand mechanisms driven by kindlin-3 inactivation. Here, we show that kindlin-3 inactivation through knockdown or somatic mutations increases BRAF melanoma cells oncogenic properties via collagen-related signaling by decreasing cell adhesion and enhancing proliferation and migration in vitro, and by promoting tumor growth in mice.
View Article and Find Full Text PDFMore than 70% of human NRAS melanomas are resistant to MEK inhibitors highlighting the crucial need for efficient therapeutic strategies for these tumors. CD147, a membrane receptor, is overexpressed in most cancers including melanoma and is associated with poor prognosis. We show here that CD147i, a specific inhibitor of CD147/VEGFR-2 interaction represents a potential therapeutic strategy for NRAS melanoma cells.
View Article and Find Full Text PDFMalignant melanoma is one of the most aggressive skin cancers and is characterized by early lymph node metastasis and the capacity to develop resistance to therapies. Hence, understanding the regulation of lymphangiogenesis through mechanisms contributing to lymphatic vessel formation represents a treatment strategy for metastatic cancer. We have previously shown that CD147, a transmembrane glycoprotein overexpressed in melanoma, regulates the angiogenic process in endothelial cells.
View Article and Find Full Text PDFMicroenvironment plays a crucial role in tumor development and progression. Cancer cells modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer diagnosis and therapeutic strategy development.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2019
Similar to coronal caries, root caries results from a disequilibrium of the de-remineralization balance in favor of the demineralization process. It mainly involves a bacterial shift in favor of an increase in the proportion of acidogenic and aciduric bacteria. This process permanently damages the dental mineralized tissues, namely the dental cementum and dentin.
View Article and Find Full Text PDFIn humans, the SOST gene encodes sclerostin, an inhibitor of bone growth and remodeling, which also negatively regulates the bone repair process. Sclerostin has also been implicated in tooth formation, but its potential role in pulp healing remains unknown. The aim of this study was to explore the role of sclerostin in reparative dentinogenesis using Sost knockout mice ( Sost).
View Article and Find Full Text PDFCD147 has been implicated in melanoma invasion and metastasis mainly through increasing metalloproteinase synthesis and regulating VEGF/VEGFR signalling. In this study, the prognostic value of CD147 expression was investigated in a cohort of 196 cutaneous melanomas including 136 consecutive primary malignant melanomas, 30 lymph nodes, 16 in-transit and 14 visceral metastases. A series of 10 normal skin, 10 blue nevi and 10 dermal nevi was used as control.
View Article and Find Full Text PDFClaudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI.
View Article and Find Full Text PDFExtracellular matrix metalloproteinase inducer (EMMPRIN), known for its ability to induce matrix metalloproteinase (MMP) expression, was proposed to play a role in the adverse cardiac extracellular matrix remodeling. After observing an age-associated increase in cardiac EMMPRIN expression in both mice and rats, the role and mechanism of action of EMMPRIN was investigated in the myocardial age-associated changes using 3, 12 and 24 month old EMMPRIN knock-out (KO) vs. wild-type (WT) mice, by cardiac echocardiography, Western blots, immunohistochemistry, ELISA and histology.
View Article and Find Full Text PDFEMMPRIN/CD147 is mainly known for its protease inducing function but a role in promoting tumor angiogenesis has also been demonstrated. This study provides evidence that EMMPRIN is a new coreceptor for the VEGFR-2 tyrosine kinase receptor in both endothelial and tumor cells, as it directly interacts with it and regulates its activation by its VEGF ligand, signalling and functional consequences both in vitro and in vivo. Computational docking analyses and mutagenesis studies identified a molecular binding site in the extracellular domain of EMMPRIN located close to the cell membrane and containing the amino acids 195/199.
View Article and Find Full Text PDFEMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with β1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading.
View Article and Find Full Text PDFUnlabelled: Since Matrix metalloproteinases (MMPs) have been suggested to contribute to dentin caries progression, the hypothesis that MMP inhibition would affect the progression of dentin caries is clinically relevant. Grape seed extracts (GSE) have been previously reported to be natural inhibitors of MMPs.
Objective: To evaluate the capacity of a GSE mouthrinse to prevent the degradation of demineralized dentin matrix by MMP-3 (stromelysin-1).
Kindlin-3 (FERMT-3) is known to be central in hemostasis and thrombosis control and its deficiency disrupts platelet aggregation and causes Leukocyte Adhesion Deficiency disease. Here we report that Kindlin-3 has a tumor suppressive role in solid cancer. Our present genetic and functional data show that Kindlin-3 is downregulated in several solid tumors by a mechanism involving gene hypermethylation and deletions.
View Article and Find Full Text PDFTooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation.
View Article and Find Full Text PDFObjective: To analyze the effect of preserved antiglaucoma eye drops on the expression of extracellular matrix (ECM) metalloproteinase inducer (EMMPRIN) in conjunctival epithelial cells.
Methods: A total of 18 patients treated for primary open-angle glaucoma with benzalkonium chloride (BAK) preserved eye drops and eight age-matched controls were included in this study. Glaucoma patients were divided into two groups according to their daily exposure to BAK: high-exposure (HE) group and low-exposure (LE) group.
Background: Elevated levels of EMMPRIN/CD147 in cancer tissues have been correlated with tumor progression but the regulation of its expression is not yet understood. Here, the regulation of EMMPRIN expression was investigated in testicular germ cell tumor (TGCTs) cell lines.
Methods: EMMPRIN expression in seminoma JKT-1 and embryonal carcinoma NT2/D1 cell lines was determined by Western blot, immunofluorescence and qRT-PCR.
Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment.
View Article and Find Full Text PDFCommunication between the epithelial and stromal tissue layers, separated by basement membrane, is known to provide the information necessary for development, differentiation, and homeostasis. These interactions are altered in benign or malignant diseases, in particular when the basement membrane barrier is disrupted allowing a greater proximity between the two cell layers that triggers tissue remodeling. Epithelial-stromal interactions (ESI) have been examined in vitro by various approaches that can be broadly divided into interactions arising from secreted diffusible factors and interactions through direct cell-cell contact.
View Article and Find Full Text PDFBackground: The principal feature of tendon degeneration is structural change of the extracellular matrix (ECM) including collagens. In painful tendons, alterations of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been described; however, the initial molecular mechanism at the origin of these alterations is still poorly understood. A rat model of supraspinatus tendon overuse has been developed, which may be predictive of pathological tendon alterations.
View Article and Find Full Text PDFBlockage of the metastasis process remains a significant clinical challenge, requiring innovative therapeutic approaches. For this purpose, molecules that inhibit matrix metalloproteinases activity or induce the expression of their natural inhibitor, the tissue inhibitor of metalloproteinases (TIMPs), are potentially interesting. In a previous study, we have shown that synthetic ligands binding to cell surface nucleolin/nucleophosmin and known as HB 19 for the lead compound and NucAnt 6L (N6L) for the most potent analog, inhibit both tumor growth and angiogenesis.
View Article and Find Full Text PDFBackground: The role of pleiotrophin and its receptors RPTPβ/ζ and Syndecan-3 during tumor metastasis remains unknown.
Results: RPTPβ/ζ knockdown initiates EMT, promotes pleiotrophin-mediated migration and attachment through Syndecan-3 and induces in vivo metastasis.
Conclusion: RPTPβ/ζ plays a suppressor-like role in prostate cancer metastasis.
The histological classification of testicular germ cell tumours (TGCTs) to seminoma or non-seminomatous germ cell tumours is at present the main criterion for the clinical outcome and selection of the treatment strategy. In view of the need to identify novel prognostic biomarkers for TGCTs, we investigated the expression of the matrix metalloproteinases MMP-2 and MMP-9 in testicular tumour tissues and cell lines of both seminoma and non-seminoma origin. Immunohistochemistry and zymography analysis of tumoural tissues showed significantly higher levels of MMP-2 and MMP-9 compared with normal testis with the active forms detected only in the tumour tissues.
View Article and Find Full Text PDFBackgrounds: An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression.
View Article and Find Full Text PDFThe source tissue for biomarkers mRNA expression profiling of tumors has traditionally been fresh-frozen tissue. The adaptation of formalin-fixed, paraffin-embedded (FFPE) tissues for routine mRNA profiling would however be invaluable in view of their abundance and the clinical information related to them. However, their use in the clinic remains a challenge due to the poor quality of RNA extracted from such tissues.
View Article and Find Full Text PDF