Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet-visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations.
View Article and Find Full Text PDFBackground: Glutathione peroxidase (GPx) is a significant antioxidant enzyme that plays a key role in protecting the body from reactive oxygen species (ROS) and their toxicity. As a biocatalyst, the enzyme has been shown to reduce hydrogen peroxide to water and lipid hydroperoxides to their respective alcohols. The increased levels of ROS in patients with diabetes have been speculated to arise, in part, from alterations in the activity of glutathione antioxidant enzymes, perhaps, by mechanisms such as the glycation of the protein, in vivo.
View Article and Find Full Text PDFMelamine (1,3,5-triazine-2,4,6-triamine) is employed in the manufacture of plastics, laminates and glues, yet, it has been found sometimes added illegally to dairy products to artificially inflate foods' protein content. In 2008, dairy products adulterated with melamine were blamed for the death of several infants in China, a situation that forced Beijing to introduce stricter food safety measures. The objectives of this study were threefold: (1) to investigate the susceptibility of the amine groups of melamine to glycation with D-galactose, D-glucose and lactose, sugars commonly found in milk, (2) to study the rate and extent of melamine's glycation with methylglyoxal, glyoxal and DL-glyceraldehyde, three highly reactive metabolites of D-galactose, D-glucose and lactose, and (3) to characterize, using mass spectrometry, the Advanced Glycation Endproducts (AGEs) of melamine with sugars found commonly in milk and their metabolites.
View Article and Find Full Text PDFSeveral environmental pollutants, including metals can induce toxicological effect on aquatic animal species. Most studies to understand the toxicity of arsenic compounds were performed in mammalian cells; however, the study of the arsenic toxicity to the aquatic animals' species, including fish, is limited. So the objective of this study was first to investigate the effects of As(2)O(3) induced toxicity particularly on apoptosis and necrosis mediated cell death in fish cell PLHC-1 as compared to the mechanism of toxicity from known mammalian cell lines, secondly to relate in vitro effects in fish to those demonstrated by in vivo systems.
View Article and Find Full Text PDFWe studied colon carcinogenesis using Fourier-transform infrared (FT-IR) microspectroscopy, an evolving method that allows the nondestructive assessment of the chemical composition of cells and tissues and of the in situ relationship between molecules, and assessed its diagnostic potential. Mid-FT-IR spectra were obtained from frozen colon tissue samples of normal (C57BL/6J) and Min (Apc(Min) mutant) mice, the latter recapitulating key features of human colon carcinogenesis. Classic spectroscopic analysis demonstrated marked differences in the Mid-FT-IR spectra between normal and dysplastic tissues, especially regarding peak positions and band intensity ratios in the regions 1800 to 985 cm(-1) and 3000 to 2700 cm(-1), reflecting changes in cellular nucleic acids, phosphates, and carbohydrates.
View Article and Find Full Text PDFThe posttranslational modification of proteins by sugars has been demonstrated in diabetes and classical galactosemia. In diabetes, the glycation process occurs as a result of d-glucose nonenzymatically reacting with proteins such as albumin and hemoglobin, used today as important tools to monitor the efficiency of dietary control and therapy during treatment of diabetes. In classical galactosemia, d-galactose contributes to the formation of glycated proteins as well, suggesting that, akin to diabetes with glucated proteins, the monitoring of galactated proteins may facilitate management of patients with galactosemia.
View Article and Find Full Text PDFDihydroxyacetone phosphate (DHAP) is a glycolytic intermediate that has been found to be significantly elevated in the erythrocytes of diabetic patients and patients with triosephosphate isomerase deficiency. DHAP spontaneously breaks down to methylglyoxal, a potent glycating agent that reacts with proteins and nucleic acids in vivo to form advanced glycation endproducts (AGEs). Like methylglyoxal, DHAP itself is also a glycating metabolite, capable of condensing with proteins and altering their structure or function.
View Article and Find Full Text PDFA sensitive, rapid, and reliable method for measuring D-glucose and D-galactose levels in glycoconjugates has been developed. In this method, the NAD(P)H produced from the enzymatic oxidation of the monosaccharides is reacted with a CuSO4-bathocuproinedisulfonic acid reagent (Cu-BCS) to produce a color complex absorbing maximally at 486 nm. With galactose dehydrogenase and glucose dehydrogenase serving as the model enzymes, graphs of absorbance versus varying D-glucose or D-galactose concentrations yielded a linear plot from 2.
View Article and Find Full Text PDFMethylglyoxal and glyoxal are generated from the oxidation of carbohydrates and lipids, and like D-glucose have been shown to nonenzymatically react with proteins to form advanced glycation end products (AGEs). AGEs can occur both in vitro and in vivo, and these compounds have been shown to exacerbate many of the long-term complications of diabetes. Earlier studies in our laboratory reported D-glucose, D-galactose, and D/L-glyceraldehyde formed AGEs with nucleosides.
View Article and Find Full Text PDFGuanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold.
View Article and Find Full Text PDFAdvanced glycation end products (AGEs) play a significant role in the pathophysiology of diabetes leading to such conditions as atherosclerosis, cataract formation, and renal dysfunction. While the formation of nucleoside AGEs was previously demonstrated, no extensive studies have been performed to assess the effect of AGEs on DNA structure and folding. The objective of this study was to investigate the nonenzymatic glycation of two DNA oligonucleotide duplexes with one duplex consisting of deoxy-poly(A)15 and deoxy-poly(T)15 and the other consisting of deoxy-poly(GA)15 and deoxy-poly(CT)15.
View Article and Find Full Text PDFThe advanced glycation end products (AGEs) of DNA nucleobases have received little attention, perhaps due to the fact that adenine, guanine, cytosine and thymine do not dissolve under mild pH conditions. To maintain nucleobases in solution, alkaline pH conditions are typically required. The objectives of this investigation were twofold: to study the susceptibility of DNA nucleobases to nonenzymatic attack by different sugars, and to evaluate the factors that influence the formation of nucleobase AGEs at pH 12, i.
View Article and Find Full Text PDFGlyoxylate is a 2 carbon aldo acid that is formed in hepatic tissue from glycolate. Once formed, the molecule can be converted to glycine by alanine-glyoxylate aminotransferase (AGAT). In defects of AGAT, glyoxylate is transformed to oxalate, resulting in high levels of oxalate in the body.
View Article and Find Full Text PDFReducing sugars can react with the free amino groups of proteins to form a heterogeneous group of compounds known as advanced glycation endproducts (AGEs) or Maillard reaction products. The objective of this investigation was to monitor the nonenzymatic glycation of DNA nucleosides and to characterize the formation of nucleoside AGEs using capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), UV fluorescence spectroscopy, and mass spectrometry. Deoxyguanosine, deoxyadenosine, deoxythymidine, and deoxycytidine were used as the model nucleosides and were incubated over time with glucose, galactose, or glyceraldehyde.
View Article and Find Full Text PDFChlamydia trachomatis is the leading cause of sexually transmitted disease in the United States. Effective screening for this agent can facilitate prompt treatment and prevent its sequelae. The recent introduction of liquid-based cytology has made possible the simultaneous screening of cervical intraepithelial lesions and detection of C.
View Article and Find Full Text PDF