Spinal Muscular Atrophy (SMA) is a progressive neurodegenerative disease affecting lower motor neurons that is caused by a deficiency in ubiquitously expressed Survival Motor Neuron (SMN) protein. Two mutually exclusive hypotheses have been discussed to explain increased motor neuron vulnerability in SMA. Reduced SMN levels have been proposed to lead to defective snRNP assembly and aberrant splicing of transcripts that are essential for motor neuron maintenance.
View Article and Find Full Text PDFA deficiency in Survival Motor Neuron (SMN) protein results in motor neuron loss in spinal muscular atrophy (SMA) patients. Human SMN is encoded by SMN1 and SMN2 that differ by a single C6T transition in a splice regulatory region of exon 7. In SMN2, exon 7 is skipped leading to an unstable protein, which cannot compensate for SMN1 loss in SMA patients.
View Article and Find Full Text PDFDmrt transcription factors control sex determination or sex-specific differentiation across all invertebrate and vertebrate species, in which they have been studied so far. In addition to important functions in the reproductive system, also nongonadal roles have been assigned to several dmrt family members. One example is dmrt5, which was shown to guide neurogenesis in the forebrain of some vertebrates including fish.
View Article and Find Full Text PDF