Quantum information science has garnered significant attention due to its potential in solving problems that are beyond the capabilities of classical computations based on integrated circuits. At the heart of quantum information science is the quantum bit or qubit, which is used to carry information. Achieving large-scale and high-fidelity quantum bits requires the optimization of materials with trap-free characteristics and long coherence times.
View Article and Find Full Text PDFZero-dimensional CsCuX (X=Cl, Br, or I), the intensively studied light-emitting materials, generally exhibit single-band emissions from intrinsic self-trapped excitons (STEs), while defect-induced (extrinsic) STEs were considered nonemissive. Herein, we observed a dual-band emission from intrinsic and extrinsic STEs for CsCuBr at low temperature, and their emission mechanisms are elucidated. The intrinsic and extrinsic STEs are trapped from different initial states, with remarkably large trapping depths (>900 meV) evaluated at 50 K, indicating their negligible detrapping rates.
View Article and Find Full Text PDFThis study puts forth a novel terminal group design to develop medium-band gap Y-series acceptors beyond conventional side-chain engineering. We focused on the strategical integration of an electron-donating methoxy group and an electron-withdrawing halogen atom at benzene-fused terminal groups. This combination precisely modulated the dipole moment and electron density of terminal groups, effectively attenuating intramolecular charge transfer effect, and widening the band gap of acceptors.
View Article and Find Full Text PDFIndoor photovoltaics (IPVs) are garnering increasing attention from both the academic and industrial communities due to the pressing demand of the ecosystem of Internet-of-Things. All-polymer solar cells (all-PSCs), emerging as a sub-type of organic photovoltaics, with the merits of great film-forming properties, remarkable morphological and light stability, hold great promise to simultaneously achieve high efficiency and long-term operation in IPV's application. However, the dearth of polymer acceptors with medium-bandgap has impeded the rapid development of indoor all-PSCs.
View Article and Find Full Text PDFDeveloping a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity.
View Article and Find Full Text PDFPolymers have gained attraction at the industrial level owing to their elastic and lightweight nature, as well as their astonishing mechanical and electrical applications. Their scope is limited due to their organic nature, which eventually leads to the degradation of their properties. The aim of this work was to produce polymer composites with finely dispersed metal oxide nanofillers and carbon nanotubes (CNTs) for the investigation of their charge-storage applications.
View Article and Find Full Text PDF