Angew Chem Int Ed Engl
October 2024
We explore the potential of fluorine-containing small Mn chelates as alternatives to perfluorinated nanoparticles, widely used as F MRI probes. In MnL1, the cyclohexanediamine skeleton and two piperidine rings, involving each a metal-coordinating amide group and an appended CF moiety, provide high rigidity to the complex. This allows for good control of the Mn-F distance (r=8.
View Article and Find Full Text PDFThis study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (M) and co-precipitation at controlled pH (M), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI).
View Article and Find Full Text PDFDespite significant progress in cancer imaging and treatment over the years, early diagnosis and metastasis detection remain a challenge. Molecular magnetic resonance imaging (MRI), with its high resolution, can be well adapted to fulfill this need, requiring the design of contrast agents which target specific tumor biomarkers. Netrin-1 is an extracellular protein overexpressed in metastatic breast cancer and implicated in tumor progression and the appearance of metastasis.
View Article and Find Full Text PDFWe present the characterisation of a Gd-based contrast agent that responds to Zn upon interaction with Human Serum Albumin. We show that the contradictory behaviour is related to Gd-accumulation in Zn-rich tissues. This highlights the importance of the biodistribution of such contrast agents.
View Article and Find Full Text PDFRecent studies have demonstrated a new role for , a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of in the functional and structural properties of this brain region. (magnetic resonance imaging and localized spectroscopy, behavior analysis) and (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and knockout (KO) mice.
View Article and Find Full Text PDFDrug-loaded liposomes are typical examples of nanomedicines. We show here that doxorubicin, the anti-cancer agent in the liposomal drug Doxil, can sensitize Ytterbium (Yb ) and generate its near-infrared (NIR) emission. When doxorubicin and amphiphilic Yb chelates are incorporated into liposomes, the sensitized emission of Yb is dependent on the integrity of the particles, which can be used to monitor drug release.
View Article and Find Full Text PDFReproduction induces changes within the brain to prepare for gestation and motherhood. However, the dynamic of these central changes and their relationships with the development of maternal behavior remain poorly understood. Here, we describe a longitudinal morphometric neuroimaging study in female mice between pre-gestation and weaning, using new magnetic resonance imaging (MRI) resources comprising a high-resolution brain template, its associated tissue priors (60-µm isotropic resolution) and a corresponding mouse brain atlas (1320 regions of interest).
View Article and Find Full Text PDFToxicity concerns related to Gd(III)-based magnetic resonance imaging (MRI) agents prompted an intensive research toward their replacement by complexes of essential metal ions, like Mn(II). Here, we report a macrocyclic chelate, [Mn(PC2A-BP)], which possesses high thermodynamic stability (log = 14.86 and pMn=8.
View Article and Find Full Text PDFThe search for more biocompatible alternatives to Gd -based MRI agents, and the interest in Mn for PET imaging call for ligands that form inert Mn chelates. Given the labile nature of Mn , high inertness is challenging to achieve. The strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L endows its Mn complex with exceptional kinetic inertness.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd for Magnetic Resonance Imaging (MRI) and Ga for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells.
View Article and Find Full Text PDFIn this study, an original aza-BODIPY system comprising two Gd complexes has been designed and synthesized for magnetic resonance imaging/optical imaging applications, by functionalization of the boron center. This strategy enabled the obtainment of a positively charged bimodal probe, which displays an increased water solubility, optimized photophysical properties in the near-infrared region, and very promising relaxometric properties. The absorption and emission wavelengths are 705 and 741 nm, respectively, with a quantum yield of around 10% in aqueous media.
View Article and Find Full Text PDFObjectives: The aim of this study was to determine potential metabolism and histological modifications due to gadolinium retention within deep cerebellar nuclei (DCN) after linear gadolinium-based contrast agent injection (gadodiamide) in rats at 1 year after the last injection.
Materials And Methods: Twenty female rats received 20 doses of gadodiamide (0.6 mmol of gadolinium per kilogram each) over 5 weeks.
Aim: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood.
Methods: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed.
At present, there is a lack of well-validated protocols that allow for the analysis of the mechanical properties of muscle and tendon tissues. Further, there are no reports regarding characterization of mouse skeletal muscle and tendon mechanical properties in vivo using elastography thereby limiting the ability to monitor changes in these tissues during disease progression or response to therapy. Therefore, we sought to develop novel protocols for the characterization of mechanical properties in musculotendinous tissues using atomic force microscopy (AFM) and ultrasound elastography.
View Article and Find Full Text PDFIntroduction: Exploration of placental perfusion is essential in screening for dysfunctions impairing fetal growth. The objective of this study was to assess the potential value of contrast-enhanced ultrasonography (CEUS) and magnetic resonance imaging (MRI) for examining placental perfusion in a murine model of intrauterine growth restriction (IUGR). We also studied the reproducibility of perfusion quantification by CEUS.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis is a progressive, devastating, and yet untreatable fibrotic disease of unknown origin. Interleukin-33 (IL-33), an IL-1 family member acts as an alarmin with pro-inflammatory properties when released after stress or cell death. Here, we investigated the role of IL-33 in the bleomycin (BLM)-induced inflammation and fibrosis model using mice IL-33 receptor [chain suppression of tumorigenicity 2 (ST2)] mice compared with C57BL/6 wild-type mice.
View Article and Find Full Text PDFJ Nanobiotechnology
February 2018
Background: Recent advances in nanomedicine have shown the great interest of active targeting associated to nanoparticles. Single chain variable fragments (scFv) of disease-specific antibodies are very promising targeting entities because they are small, not immunogenic and able to bind their specific antigens. The present paper is devoted to biological properties in vitro and in vivo of fluorescent and pegylated iron oxide nanoparticles (SPIONs-Cy-PEG-scFv) functionalized with scFv targeting Human Epithelial growth Receptor 2 (HER2).
View Article and Find Full Text PDFObjective: Using non-invasive magnetic resonance (MR) techniques and a histological approach, we assessed the outcomes of perinatal exposure at a low dose of 3,3'-DCBPA (2-chloro-4-[1-(3-chloro-4-hydroxyphenyl)-1-methylethyl]phenol) and/or 3,5-DCBPA (2,6-dichloro-4-[1-(4-hydroxyphenyl)-1-methylethyl]phenol) on mice livers.
Materials And Methods: Fertilized female Swiss mice were injected intraperitoneally during gestation and lactation with either vehicle control, 20 μg/kg/day of BPA, 3,5-DCBPA, 3,3'-DCBPA or a mixture (mix-DCBPA). Complementary methods were used to evaluate, in male and female pups, (1) liver structure by texture analysis of images obtained through MR imaging (MRI) and histology, (2) hepatic lipid composition through in vivo H MR spectroscopy (H MRS).
Cerebral malaria (CM) is associated with a high mortality rate and long-term neurocognitive impairment in survivors. The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA)-infection reproduces several of these features. We reported recently increased levels of IL-33 protein in brain undergoing ECM and the involvement of IL-33/ST2 pathway in ECM development.
View Article and Find Full Text PDFIntroduction: Transforming growth factor-beta (TGF-β)-inducible early gene-1 (TIEG1) is a transcription factor that is highly expressed in skeletal muscle. The purpose of this study was to characterize the structural properties of both fast-twitch (EDL) and slow-twitch (soleus) muscles in the hindlimb of TIEG1-deficient (TIEG1 ) mice.
Methods: Ten slow and 10 fast muscles were analyzed from TIEG1 and wild-type (WT) mice using MRI texture (MRI-TA) and histological analyses.
Phosphinotricin (L-PPT) is the active compound of a broad-spectrum herbicide. Acute poisoning with L-PPT has various clinical manifestations, including seizures and convulsions. However, the exact mechanism of L-PPT toxicity remains unclear.
View Article and Find Full Text PDFNovel magneto-plasmonic nanoprobes were designed for multimodal diagnosis of cancer by combination of magnetic resonance imaging (MRI), surface-enhanced resonance Raman scattering (SERRS), and fluorescence emission in the very near infrared (VNIR). A controlled electrostatic assembly of silver nanoparticles (AgNPs), superparamagnetic iron oxide nanoparticles (SPIONs), VNIR dye Nile Blue (NB), and biopolymer chitosan (Chi) was used to formulate the AgIONs-Chi nanoprobes. The formulation protocol did not involve organic solvents and was rapid and efficient as confirmed by magnetic sorting.
View Article and Find Full Text PDFWe have developed new methods enabling in vivo localization and identification of metabolites through their (1)H NMR signatures, in a drosophila. Metabolic profiles in localized regions were obtained using HR-MAS Slice Localized Spectroscopy and Chemical Shift Imaging at high magnetic fields. These methods enabled measurement of metabolite contents in anatomic regions of the fly, demonstrated by a decrease in β-alanine signals in the thorax of flies showing muscle degeneration.
View Article and Find Full Text PDFMolecular magnetic resonance imaging (MRI) approaches that detect biomarkers associated with neural activity would allow more direct observation of brain function than current functional MRI based on blood-oxygen-level-dependent contrast. Our objective was to create a synthetic molecular platform with appropriate recognition moieties for zwitterionic neurotransmitters that generate an MR signal change upon neurotransmitter binding. The gadolinium complex (GdL) we report offers ditopic binding for zwitterionic amino acid neurotransmitters, via interactions (i) between the positively charged and coordinatively unsaturated metal center and the carboxylate function and (ii) between a triazacrown ether and the amine group of the neurotransmitters.
View Article and Find Full Text PDF