Copper is an essential mineral and plays important roles in skin growth and activity. Copper delivery through skin can provide beneficial effects but its potential to induce skin irritation reactions is often overlooked. Data on dermal toxicity caused by copper compounds is scant.
View Article and Find Full Text PDFPurpose: Copper peptide (GHK-Cu) plays an important role in skin regeneration and wound healing. However, its skin absorption remains challenging due to its hydrophilicity. Here we use polymeric microneedle array to pre-treat skin to enhance GHK-Cu skin penetration.
View Article and Find Full Text PDFWe report the design of a direct electron beam patternable buffer layer to spatially control the orientation of the microdomains in an overlaying polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer (BCP) film. The buffer layer consists of a surface anchored low molecular weight PS-b-PMMA, with the PMMA segment anchored to the surface and a short PS block at the buffer layer/BCP interface. The block architecture of the buffer layer combines the essential features of "bottom up" and "top down" approaches as it functions as a nonpreferential layer to dictate perpendicular orientation of BCP domains from the substrate interface and as an e-beam resist to allow top-down lithographic process to spatially define the buffer layer on the substrate.
View Article and Find Full Text PDFWe report the self-assembly of organic-inorganic block copolymers (BCP) in thin-films by simple solvent annealing on unmodified substrates. The resulting vertically oriented lamellae and cylinders are converted to a hard silica mask by a single step highly selective oxygen plasma etching. The size of the resulting nanostructures in the case of cylinders is less than 10 nm.
View Article and Find Full Text PDFThe friction and adhesion properties of polystyrene surfaces are studied below the glass transition temperature by means of atomic force microscopy in argon. Even at a temperature far below the glass transition, the repeated sliding of a polystyrene bead tip on the non-cross-linked polystyrene surface causes significant reduction of friction and adhesion forces. There is no measurable wear of the polystyrene surface due to repeated sliding.
View Article and Find Full Text PDF