We provide a tribute to George Feher, one of the founding scientists in the use of biophysical techniques to probe photosynthetic complexes, especially the bacterial reaction center. His early life is briefly reviewed followed by a description of the impact of his 30 years of photosynthesis research. We describe his pioneering work in bacterial photosynthesis that helped to provide a detailed picture of the molecular events responsible for light energy capture and the subsequent electron and proton transfer events in photosynthetic organisms.
View Article and Find Full Text PDFQuinones are essential cofactors in many physiological processes, among them proton-coupled electron transfer (PCET) in photosynthesis and respiration. A key intermediate in PCET is the monoprotonated semiquinone radical. In this work we produced the monoprotonated benzosemiquinone (BQH(•)) by UV illumination of BQ dissolved in 2-propanol at cryogenic temperatures and investigated the electronic and geometric structures of BQH(•) in the solid state (80 K) using EPR and ENDOR techniques at 34 GHz.
View Article and Find Full Text PDFReaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides R-26 exhibit changes in the recombination kinetics of the charge-separated radical-pair state, P(·+) Q(A)(·-), composed of the dimeric bacteriochlorophyll donor P and the ubiquinone-10 acceptor Q(A), depending on whether the RCs are cooled to cryogenic temperatures in the dark or under continuous illumination (Kleinfeld et al. Biochemistry 1984, 23, 5780-5786).
View Article and Find Full Text PDFInterprotein electron transfer plays an important role in biological energy conversion. In this work, the electron transfer reaction between cytochrome c(2) (cyt) and the reaction center (RC) was studied to determine the mechanisms coupling association and electron transfer. Previous studies have shown that mutation of hydrophobic residues in the reaction interface, particularly Tyr L162, changes the binding affinity and rates of electron transfer at low ionic strengths.
View Article and Find Full Text PDFThe bacterial reaction center (RC) is a membrane protein complex that performs photosynthetic electron transfer from a bacteriochlorophyll dimer to quinone acceptors Q(A) and Q(B). Q(B) accepts electrons from the primary quinone, Q(A), in two sequential electron transfer reactions coupled to uptake of a proton from solution. It has been suggested that water molecules along the proton uptake pathway are protonated upon quinone reduction on the basis of FTIR difference spectra [Breton, J.
View Article and Find Full Text PDFThe role of short-range hydrogen bond interactions at the interface between electron transfer proteins cytochrome c(2) (cyt) and the reaction center (RC) from Rhodobacter sphaeroides was studied by mutation (to Ala) of RC residues Asn M187, Asn M188, and Gln L258 which form interprotein hydrogen bonds to cyt in the cyt-RC complex. The largest decrease in binding constant K(A) (8-fold) for a single mutation was observed for Asn M187, which forms an intraprotein hydrogen bond to the key residue Tyr L162 in the center of the contact region with a low solvent accessibility. Interaction between Asn M187 and Tyr L162 was also implicated in binding by double mutation of the two residues.
View Article and Find Full Text PDFIn the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (QB) site. Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations in the 1770-1700 cm-1 spectral range that are sensitive to 1H/2H isotopic exchange. With respect to the native RC, a novel protonation pattern for carboxylic acids upon QB photoreduction has been identified in the Glu-L212 --> Asp/Asp-L213 --> Glu mutant RC using light-induced FTIR difference spectroscopy (Nabedryk, E.
View Article and Find Full Text PDFIn the photosynthetic bacterium, Rhodobacter sphaeroides, the mobile electron carrier, cytochrome c2 (cyt c2) transfers an electron from reduced heme to the photooxidized bacteriochlorophyll dimer in the membrane bound reaction center (RC) as part of the light induced cyclic electron transfer chain. A complex between these two proteins that is active in electron transfer has been crystallized and its structure determined by X-ray diffraction. The structure of the cyt:RC complex shows the cyt c2 (cyt c2) positioned at the center of the periplasmic surface of the RC.
View Article and Find Full Text PDFInterprotein electron transfer (ET) reactions play an important role in biological energy conversion processes. One of these reactions, the ET between cytochrome c(2) (cyt) and reaction center from photosynthetic bacteria, is the focus of this theoretical study. The changes in the ET rate constant at fixed distances during the association process were calculated as the cyt moved from the electrostatically stabilized encounter complex to the bound state having short range van der Waals contacts in the tunneling region.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2004
Electrostatic interactions strongly enhance the electron transfer reaction between cytochrome (Cyt) c(2) and reaction center (RC) from photosynthetic bacteria, yielding a second-order rate constant, k(2) approximately 10(9) s(-1).M(-1), close to the diffusion limit. The proposed mechanism involves an encounter complex (EC) stabilized by electrostatic interactions, followed by a transition state (TS), leading to the bound complex active in electron transfer.
View Article and Find Full Text PDFIn the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides, light energy is rapidly converted to chemical energy through coupled electron-proton transfer to a buried quinone molecule Q(B). Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations that are observable using light-induced Fourier transform infrared (FTIR) difference spectroscopy. Upon formation, Q(B)(-) induces protonation of Glu-L212, located within 5 A of Q(B), resulting in a IR signal at 1728 cm(-1).
View Article and Find Full Text PDFIn the photosynthetic reaction center (RC) from Rhodobacter sphaeroides, the reduction of a bound quinone molecule Q(B) is coupled with proton uptake. When Asp-L213 is replaced by Asn, proton transfer is inhibited. Proton transfer was restored by two second-site revertant mutations, Arg-M233-->Cys and Arg-H177-->His.
View Article and Find Full Text PDFThe structure of the complex between cytochrome c(2) (cyt) and the photosynthetic reaction center (RC) from Rhodobacter sphaeroides shows contacts between hydrophobic residues Tyr L162, Leu M191, and Val M192 on the RC and the surface of the cyt [Axelrod et al. (2002) J. Mol.
View Article and Find Full Text PDFElectrostatic interactions are important for protein-protein association. In this study, we examined the electrostatic interactions between two proteins, cytochrome c(2) (cyt c(2)) and the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides, that function in intermolecular electron transfer in photosynthesis. Electrostatic contributions to the binding energy for the cyt c(2)-RC complex were calculated using continuum electrostatic methods based on the recent cocrystal structure [Axelrod, H.
View Article and Find Full Text PDFThe spin-lattice relaxation times (T(1)) for the reduced quinone acceptors Q(A)(-.) and Q(B)(-.), and the intermediate pheophytin acceptor phi(-.
View Article and Find Full Text PDFIn the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.
View Article and Find Full Text PDFRapid-scan Fourier transform infrared (FTIR) difference spectroscopy was used to investigate the electron transfer reaction Q(A-)Q(B)-->Q(A)Q(B-) (k(AB)(1)) in mutant reaction centers of Rhodobacter sphaeroides, where Asp-L210 and/or Asp-M17 have been replaced with Asn. Mutation of both residues decreases drastically k(AB)(1)), attributed to slow proton transfer to Glu-L212, which becomes rate limiting for electron transfer to Q(B) [M.L.
View Article and Find Full Text PDF