Publications by authors named "Melvin Park"

The use of fentanyl and the emergence of fentanyl analogs over recent decades has become an increasing concern to the community at large. Fentanyl and its analogs are the major contributors to fatal and nonfatal overdoses in the United States. Most recent cases of fentanyl-related overdose are linked to illicitly manufactured fentanyl and its associated extreme potency.

View Article and Find Full Text PDF

Ultraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin.

View Article and Find Full Text PDF

Lipids are highly diverse, and small changes in lipid structures and composition can have profound effects on critical biological functions. Stable isotope labeling (SIL) offers several advantages for the study of lipid distribution, mobilization, and metabolism, as well as de novo lipid synthesis. The successful implementation of the SIL technique requires the removal of interferences from endogenous molecules.

View Article and Find Full Text PDF

The amino acid position within a histone sequence and the chemical nature of post-translational modifications (PTMs) are essential for elucidating the "Histone Code". Previous work has shown that PTMs induce specific biological responses and are good candidates as biomarkers for diagnostics. Here, we evaluate the analytical advantages of trapped ion mobility (TIMS) with parallel accumulation-serial fragmentation (PASEF) and tandem mass spectrometry (MS/MS) for bottom-up proteomics of model cancer cells.

View Article and Find Full Text PDF

Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography.

View Article and Find Full Text PDF
Article Synopsis
  • - Histone proteins, crucial for gene regulation in eukaryotes, are modified post-translationally (PTMs), and understanding these modifications can help link them to biological processes like DNA transcription, replication, and repair.
  • - The study details a new high-throughput method using advanced techniques like liquid chromatography and mass spectrometry to analyze histone PTMs from biological samples effectively.
  • - The method employs innovative data acquisition strategies that help accurately identify and assign the various biologically important histone modifications based on specific characteristics during analysis.
View Article and Find Full Text PDF

α-Synuclein is an intrinsically disordered protein that plays a critical role in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Proteomics studies of human brain samples have associated the modification of the O-linked -acetyl-glucosamine (O-GlcNAc) to several synucleinopathies; in particular, the position of the O-GlcNAc can regulate protein aggregation and subsequent cell toxicity. There is a need for site specific O-GlcNAc α-synuclein screening tools to direct better therapeutic strategies.

View Article and Find Full Text PDF

"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) on intact histones play a major role in regulating chromatin dynamics and influence biological processes such as DNA transcription, replication, and repair. The nature and position of each histone PTM is crucial to decipher how this information is translated into biological response. In the present work, the potential of a novel tandem top-"double-down" approach─ultraviolet photodissociation followed by mobility and mass-selected electron capture dissociation and mass spectrometry (UVPD-TIMS-q-ECD-ToF MS/MS)─is illustrated for the characterization of HeLa derived intact histone H4 proteoforms.

View Article and Find Full Text PDF

Trapped ion mobility spectrometry (TIMS) when coupled with mass spectrometry (MS) offers great advantages for the separation of isobaric, isomeric, and/or conformeric species. In the present work, we report the advantages of coupling TIMS with a low-cost, ultraviolet photodissociation (UVPD) linear ion trap operated at few mbars prior to time-of-flight (ToF) MS analysis for the effective characterization of isobaric, isomeric, and/or conformeric species based on mobility-selected fragmentation patterns. These three traditional challenges to MS-based separations are illustrated for the case of biologically relevant model systems: H3.

View Article and Find Full Text PDF

Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in -trapped ion mobility spectrometry/mass spectrometry (TIMS/MS). Two different TIMS/MS instruments are discussed in detail: the first TIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal TIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell technologies are advancing biology, but most methods focus on imaging and sequencing, overlooking the importance of proteins in cell function.
  • A new workflow combines miniaturized sample prep, low-flow chromatography, and a novel mass spectrometer to significantly improve sensitivity for analyzing proteins in individual cells.
  • This method allows for precise quantification of proteomes, reveals consistent core proteomes amidst variations, and has potential applications in studying cellular health and disease at a deeper level.
View Article and Find Full Text PDF

Rationale: Tandem-ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem-ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes.

Methods: Here, we describe the coupling of the separation capabilities of tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis.

View Article and Find Full Text PDF

Recent advances in efficiency and ease of implementation have rekindled interest in ion mobility spectrometry, a technique that separates gas phase ions by their size and shape and that can be hybridized with conventional LC and MS. Here, we review the recent development of trapped ion mobility spectrometry (TIMS) coupled to TOF mass analysis. In particular, the parallel accumulation-serial fragmentation (PASEF) operation mode offers unique advantages in terms of sequencing speed and sensitivity.

View Article and Find Full Text PDF

Blanc's Law has served as a way to predict the mobilities of ions in mixed drift gases for over 100 years yet has remained largely unexplored using newer ion mobility spectrometry (IMS) configurations, including traveling wave and trapped IMS (TIMS) systems. Here, we evaluate a drift-tube IMS (DTIMS) and compare it to a similar set of experiments performed in TIMS. We found that Blanc's Law can be applied in a DTIMS to determine the mobility of an analyte in the minor gas component of a ternary mixed drift gas system within 2% error.

View Article and Find Full Text PDF

Molecular characterization of compounds present in highly complex mixtures such as petroleum is proving to be one of the main analytical challenges. Heavy fractions, such as asphaltenes, exhibit immense molecular and isomeric complexity. Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with its unequalled resolving power, mass accuracy and dynamic range can address the isobaric complexity.

View Article and Find Full Text PDF

Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands.

View Article and Find Full Text PDF

The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range ( = 0.185-1.

View Article and Find Full Text PDF

Ion mobility-mass spectrometry (IM-MS) has become a powerful tool for glycan structural characterization due to its ability to separate isomers and provide collision cross section (CCS) values that facilitate structural assignment. However, IM-based isomer analysis may be complicated by the presence of multiple gas-phase conformations of a single structure that not only increases difficulty in isomer separation but can also introduce the possibility for misinterpretation of conformers as isomers. Here, the ion mobility behavior of several sets of isomeric glycans, analyzed as their permethylated derivatives, in both nonreduced and reduced forms, was investigated by gated-trapped ion mobility spectrometry (G-TIMS).

View Article and Find Full Text PDF

A key aspect of reduced pressure ion mobility spectrometry (IMS) experiments is to identify experimental conditions that minimize the role of collisional energy transfer that allows for assessing effective ion-neutral collision cross sections of metabolites, peptides, and proteins in "native-like" or compact states. Across two separate experimental campaigns using a prototype trapped ion mobility spectrometer (TIMS) coupled to a time-of-flight mass spectrometer, we present independent findings that support the results recently published by Morsa et al. using a different set of thermometer ions (Morsa et al.

View Article and Find Full Text PDF

Glycoproteins play a central role in many biological processes including disease mechanisms. Nevertheless, because glycoproteins are heterogeneous entities, it remains unclear how glycosylation modulates the protein structure and function. Here, we assess the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (tandem-TIMS/MS) to characterize the structure and sequence of the homotetrameric glycoprotein avidin.

View Article and Find Full Text PDF

Using contemporary theory for ion mobility spectrometry (IMS), gas-phase ion mobilities within a trapped ion mobility-mass spectrometer (TIMS) are not easily deduced using first principle equations due to non-linear pressure changes and consequently variations in E/N. It is for this reason that prior literature values have traditionally been used for TIMS calibration. Additionally, given that verified mobility standards currently do not exist and the that the exact conditions used to measure reported literature values may not always represent the environment within the TIMS, a direct approach to validating the behavior of the TIMS system is warranted.

View Article and Find Full Text PDF

The aerosols present in the atmosphere of the Saturn's moon Titan are of particular planetary science interest and several spacecraft missions are already allowed to gather spectroscopic data. Titan haze's analogs, so-called tholins, were produced on earth to push forward the comprehension of their formation and properties. In this study, this highly complex mixture was analyzed here for the first time by trapped ion mobility spectrometry coupled to ultra-high resolution mass spectrometry (FTICR MS).

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) play vital roles in many biological processes and are naturally present as complex mixtures of polysaccharides with tremendous structural heterogeneity, including many structural isomers. Mass spectrometric analysis of GAG isomers, in particular highly sulfated heparin (Hep) and heparan sulfate (HS), is challenging because of their structural similarity and facile sulfo losses during analysis. Herein, we show that highly sulfated Hep/HS isomers may be resolved by gated-trapped ion mobility spectrometry (gated-TIMS) with negligible sulfo losses.

View Article and Find Full Text PDF

Rationale: The molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas-phase modifiers on biomolecules characterized using ion mobility techniques.

Methods: The effect of solution additives and gas-phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.

View Article and Find Full Text PDF