Publications by authors named "Melvin Felton"

Large cortical and hippocampal pyramidal neurons are elements of neuronal circuitry that have been implicated in cross-frequency coupling (CFC) during cognitive tasks. We investigate potential mechanisms for CFC within these neurons by examining the role that the hyperpolarization-activated mixed cation current (I) plays in modulating CFC characteristics in multicompartment neuronal models. We quantify CFC along the soma-apical dendrite axis and tuft of three models configured to have different spatial distributions of I conductance density: (1) exponential gradient along the soma-apical dendrite axis, (2) uniform distribution, and (3) no I conductance.

View Article and Find Full Text PDF

Evidence suggests that layer 5 pyramidal neurons can be divided into functional zones with unique afferent connectivity and membrane characteristics that allow for post-synaptic integration of feedforward and feedback inputs. To assess the existence of these zones and their interaction, we characterized the resonance properties of a biophysically-realistic compartmental model of a neocortical layer 5 pyramidal neuron. Consistent with recently published theoretical and empirical findings, our model was configured to have a "hot zone" in distal apical dendrite and apical tuft where both high- and low-threshold Ca ionic conductances had densities 1-2 orders of magnitude higher than anywhere else in the apical dendrite.

View Article and Find Full Text PDF

A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B.

View Article and Find Full Text PDF

An optical detection method is presented that is designed to detect and identify the presence of macromolecular gas species (e.g., organophosphate-based nerve agent simulants) at trace level concentrations.

View Article and Find Full Text PDF

We report results of an ongoing study designed to assess the ability for enhanced detection of recently buried land-mines and/or improvised explosive devices (IED) devices using passive long-wave infrared (LWIR) polarimetric imaging. Polarimetric results are presented for a series of field tests conducted at various locations and soil types. Well-calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization (DoLP) are recorded for different line-of-sight (LOS) slant paths at varying distances.

View Article and Find Full Text PDF

We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid- and long-wave infrared for a variety of chemically and biologically based aerosols. For this study we consider only chemically derived aerosols, and in particular, a group of chemical compounds often used as simulants for the detection of extremely toxic organophosphorus nerve agents. These materials include: diethyl methylphosphonate (DEMP), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diethyl phthalate (DEP).

View Article and Find Full Text PDF