Background: There is limited research comparing both performance and brain control of walking between older adults with progressive and relapsing-remitting MS.
Objective: This study compared older adults with progressive and relapsing-remitting MS for differences in prefrontal cortex (PFC) activation in single- and dual-task-walking and practice-related effects on neural efficiency, walking, and cognitive performances.
Methods: Older adults with progressive (n = 32, age=65±6ys) and relapsing-remitting (n = 63, age=65±4ys) MS completed three conditions (single-task walk, single-task-alpha, i.
Objective: We examined whether brain hemodynamic responses, gait, and cognitive performances under single- and dual-task conditions predict falls during longitudinal follow-up in older adults with multiple sclerosis (OAMS) with relapsing-remitting and progressive subtypes.
Methods: Participants with relapsing-remitting ( = 53, mean age = 65.02 ± 4.
Background: Mobility and cognitive impairment are prevalent and co-occurring in older adults with multiple sclerosis (OAMS), yet there is limited research concerning the role of disability status in the cognitive control of gait among OAMS.
Objective: We investigated the levels of prefrontal cortex (PFC) activation, using oxygenated hemoglobin (HbO), during cognitively-demanding tasks in OAMS with lower and higher disability using functional near-infrared spectroscopy (fNIRS) to: (1) identify PFC activation differences in single task walk and cognitively-demanding tasks in OAMS with different levels of disability; and (2) evaluate if disability may moderate practice-related changes in neural efficiency in OAMS.
Methods: We gathered data from OAMS with lower (n = 51, age = 65 ± 4 years) or higher disability (n = 48, age = 65 ± 5 years), using a cutoff of 3 or more, in the Patient Determined Disease Steps, for higher disability, under 3 different conditions (single-task walk, Single-Task-Alpha, and Dual-Task-Walk [DTW]) administered over 3 counterbalanced, repeated trials.
Introduction: Achieving simultaneous cerebral blood flow (CBF) and oxygenation measures, specifically for point-of-care injury monitoring in prolonged field care, requires the implementation of appropriate methodologies and advanced medical device design, development, and evaluation. The near-infrared spectroscopy (NIRS) method measures the absorbance of light whose attenuation is related to cerebral blood volume and oxygenation. By contrast, diffuse correlation spectroscopy (DCS) allows continuous noninvasive monitoring of microvascular blood flow by directly measuring the degree of light scattering because of red blood cell (RBC) movement in tissue capillaries.
View Article and Find Full Text PDFBackground: Internet gaming disorder (IGD) has become increasingly prevalent worldwide and is recognized as a significant public health concern because of its negative consequences on individuals mental and physical health, social relationships, academic performance and overall well-being. While research on IGD has gained significant momentum in the past decade, the neural substrates underlying this disorder remains unclear. This study aims to investigate resting-state cortical activation in male subjects with IGD using a concurrent functional near infrared spectroscopy (fNIRS) and electroencephalography (EEG) hybrid system.
View Article and Find Full Text PDFMult Scler Relat Disord
July 2024
Background/objective: Falls research in older adults with MS (OAMS) is scarce, and no studies have reported on the association between life-space mobility and falls in this group. Herein, we hypothesized that higher baseline life-space scores would be associated with reduced odds of reporting falls during follow-up, and explored whether the association differed by MS subtype (progressive vs. relapsing-remitting).
View Article and Find Full Text PDFThe peak prevalence of multiple sclerosis has shifted into older age groups, but co-occurring and possibly synergistic motoric and cognitive declines in this patient population are poorly understood. Dual-task-walking performance, subserved by the prefrontal cortex, and compromised in multiple sclerosis and aging, predicts health outcomes. Whether acute practice can improve dual-task walking performance and prefrontal cortex hemodynamic response efficiency in multiple sclerosis has not been reported.
View Article and Find Full Text PDFBackground: Older adults with multiple sclerosis (OAMS) have declines in walking and physical performance that may erode community mobility defined as the spatial extent of mobility in one's daily life and environment.
Objective: This study provided the first application and validation of the University of Alabama Birmingham Study of Aging Life-Space Assessment (UAB LSA) as a measure of community mobility in OAMS.
Methods: The sample included 97 OAMS and 108 healthy controls (HCs) who completed baseline assessments as part of an ongoing, longitudinal study.
IEEE Trans Neural Syst Rehabil Eng
September 2023
Decline in gait features is common in older adults and an indicator of increased risk of disability, morbidity, and mortality. Under dual task walking (DTW) conditions, further degradation in the performance of both the gait and the secondary cognitive task were found in older adults which were significantly correlated to falls history. Cortical control of gait, specifically in the pre-frontal cortex (PFC) as measured by functional near infrared spectroscopy (fNIRS), during DTW in older adults has recently been studied.
View Article and Find Full Text PDFObjective: Increased intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning hemodynamic signal IIV is limited. Cortical thinning occurs during aging and is associated with cognitive decline. Dual-task walking (DTW) performance in older adults has been related to cognition and neural integrity.
View Article and Find Full Text PDFBackground: Mobility impairment is common in older persons with multiple sclerosis (MS), and further compounded by general age-related mobility decline but its underlying brain substrates are poorly understood.
Objective: Examine fronto-striatal white matter (WM) integrity and lesion load as imaging correlates of mobility outcomes in older persons with and without MS.
Methods: Fifty-one older MS patients (age 64.
Neuropsychol Dev Cogn B Aging Neuropsychol Cogn
May 2024
Music making is linked to improved cognition and related neuroanatomical changes in children and adults; however, this has been relatively under-studied in aging. The purpose of this study was to assess neural, cognitive, and physical correlates of music making in aging using a dual-task walking (DTW) paradigm. Study participants ( = 415) were healthy adults aged 65 years or older, including musicians ( = 70) who were identified by current weekly engagement in musical activity.
View Article and Find Full Text PDFBackground And Objective: Cognitive and physical functions correlate and delineate aging and disease trajectories. Whereas cognitive reserve (CR) is well-established, physical reserve (PR) is poorly understood. We, therefore, developed and evaluated a novel and more comprehensive construct, individual reserve (IR), comprised of residual-derived CR and PR in older adults with and without multiple sclerosis (MS).
View Article and Find Full Text PDFWalking and cognition are interrelated due to dependence on shared brain regions that include the prefrontal cortex (PFC). Limited literature indicates that asthma is associated with poor mobility in older adults but the mechanisms underlying this relationship are unknown. Therefore, we tested the hypothesis that asthma history was associated with poor gait performance due to limited attention resources and neural inefficiency.
View Article and Find Full Text PDFBackground: The sense of 'loss of control' (LOC), or a feeling of being unable to stop eating or control what or how much one is eating, is the most salient aspect of binge eating. However, the neural alterations that may contribute to this experience and eating behavior remain poorly understood.
Methods: We used functional near-infrared spectroscopy (fNIRS) to measure activation in the prefrontal cortices of 23 women with bulimia nervosa (BN) and 23 healthy controls (HC) during two tasks: a novel go/no-go task requiring inhibition of eating responses, and a standard go/no-go task requiring inhibition of button-pressing responses.
Functional near infrared spectroscopy (fNIRS) measurements are confounded by signal components originating from multiple physiological causes, whose activities may vary temporally and spatially (across tissue layers, and regions of the cortex). Furthermore, the stimuli can induce evoked effects, which may lead to over or underestimation of the actual effect of interest. Here, we conducted a temporal, spectral, and spatial analysis of fNIRS signals collected during cognitive and hypercapnic stimuli to characterize effects of functional versus systemic responses.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
September 2022
Background: Cognitive reserve (CR) protects against cognitive decline, but whether CR influences the efficiency of cortical control of gait has not been reported. The current study addressed this important gap in the literature. Specifically, we determined the role of CR in moderating the efficiency of functional near-infrared spectroscopy (fNIRS)-derived oxygenated hemoglobin (HbO2) in the prefrontal cortex (PFC) assessed during active walking.
View Article and Find Full Text PDFDual tasking, a defined facet of executive control processes, is subserved, in part, by the prefrontal cortex (PFC). Previous functional near-infrared spectroscopy (fNIRS) studies revealed elevated PFC oxygenated hemoglobin (HbO) under Dual-Task-Walk (DTW) compared to Single-Task Walk (STW) conditions. Based on the concept of neural inefficiency (i.
View Article and Find Full Text PDFObjective: Pain is prevalent and functionally impactful in older adults. The prefrontal cortex is involved in pain perception, attentional control, and cortical control of locomotion. Although pain is a known moderator of attentional capacity, its moderating effect on cortical control of locomotion has not been assessed.
View Article and Find Full Text PDFIntraindividual variability in gait and cognitive performance is distinct from central-tendency measures and associated with clinical outcomes in aging. Knowledge concerning intraindividual variability in neural activity, however, has been relatively scarce, and no research to date has reported on such variability during active walking. The current study addressed this major gap in knowledge.
View Article and Find Full Text PDFBackground: Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works.
Research Question And Methods: Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders.
Cognitive abilities such as attention, memory, processing time, perception, and reasoning can be augmented using some type of intervention. Within the broad range of conventional and unconventional intervention methods used in cognitive enhancement, meditation is one of those that is safe, widely practiced by many since ancient times, and has been shown to reduce stress and improve psychological health and cognitive functioning. Various neuroimaging studies using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have shown functional and structural changes due to meditation in different types of meditation practices and on various groups of meditators.
View Article and Find Full Text PDFThe presence of Mild Cognitive Impairments (MCI) is associated with worse gait performance. However, the effect of MCI on cortical control of gait, as assessed during active walking, is unknown. We hypothesized that MCI would be associated with attenuated activations and limited improvement in efficiency in the Prefrontal cortex (PFC) under cognitively-demanding walking conditions.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2020
Functional near infrared spectroscopy (fNIRS) is a noninvasive optics-based neuroimaging modality successfully applied to real-life settings. The technology uses light in the near infrared range (650-950nm) to track changes in oxygenated (HbO2) and deoxygenated hemoglobin (Hb) obtained from measured light intensity using light-tissue interaction principles. fNIRS data processing involves artifact removal and hemodynamic signal conversion using modified Beer-Lambert law (MBLL) to obtain Hb and HbO2, reliably.
View Article and Find Full Text PDFUnderstanding near infrared light propagation in tissue is vital for designing next generation optical brain imaging devices. Monte Carlo (MC) simulations provide a controlled mechanism to characterize and evaluate contributions of diverse near infrared spectroscopy (NIRS) sensor configurations and parameters. In this study, we developed a multilayer adult digital head model under both healthy and clinical settings and assessed light-tissue interaction through MC simulations in terms of partial differential pathlength, mean total optical pathlength, diffuse reflectance, detector light intensity and spatial sensitivity profile of optical measurements.
View Article and Find Full Text PDF