Publications by authors named "Melotte V"

Background & Aims: The enteric nervous system (ENS), which is composed of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation; however, although neuronal aspects have been studied extensively, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.

View Article and Find Full Text PDF

Over the past years, insights in the cancer neuroscience field increased rapidly, and a potential role for neurons in colorectal carcinogenesis has been recognized. However, knowledge on the neuronal distribution, subtypes, origin, and associations with clinicopathological characteristics in human studies is sparse. In this study, colorectal tumor tissues from the Netherlands Cohort Study on diet and cancer (n = 490) and an in-cohort validation population (n = 529) were immunohistochemically stained for the pan-neuronal markers neurofilament (NF) and protein gene product 9.

View Article and Find Full Text PDF

The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon.

View Article and Find Full Text PDF

Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a >50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract performs a range of functions essential for life. Congenital defects affecting its development can lead to enteric neuromuscular disorders, highlighting the importance to understand the molecular mechanisms underlying GI development and dysfunction. In this study, we present a method for gut isolation from zebrafish larvae at 5 days post fertilization to obtain live, viable cells which can be used for single-cell RNA sequencing (scRNA-seq) analysis.

View Article and Find Full Text PDF

Background: DNA hypermethylation is an epigenetic feature that modulates gene expression, and its deregulation is observed in cancer. Previously, we identified a neural-related DNA hypermethylation fingerprint in colon cancer, where most of the top hypermethylated and downregulated genes have known functions in the nervous system. To evaluate the presence of this signature and its relevance to carcinogenesis in general, we considered 16 solid cancer types available in The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

The enteric nervous system (ENS) regulates many gastrointestinal functions including peristalsis, immune regulation and uptake of nutrients. Defects in the ENS can lead to severe enteric neuropathies such as Hirschsprung disease (HSCR). Zebrafish have proven to be fruitful in the identification of genes involved in ENS development and HSCR pathogenesis.

View Article and Find Full Text PDF

Background: Only a subset of gastric cancer (GC) patients with stage II-III benefits from chemotherapy after surgery. Tumour infiltrating lymphocytes per area (TIL density) has been suggested as a potential predictive biomarker of chemotherapy benefit.

Methods: We quantified TIL density in digital images of haematoxylin-eosin (HE) stained tissue using deep learning in 307 GC patients of the Yonsei Cancer Center (YCC) (193 surgery+adjuvant chemotherapy [S + C], 114 surgery alone [S]) and 629 CLASSIC trial GC patients (325 S + C and 304 S).

View Article and Find Full Text PDF

Background: Gastrointestinal motility measurements in mice are currently performed under suboptimal conditions, as these nocturnal animals are measured during light conditions. In addition, other stressors, like individual housing, placement in a new cage during observation, and lack of bedding and cage enrichment cause animal discomfort and might contribute to higher variability. Here we aimed to develop a refined method of the widely-used whole-gut transit assay.

View Article and Find Full Text PDF

Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.

View Article and Find Full Text PDF
Article Synopsis
  • Pediatric Intestinal Pseudo-obstruction (PIPO) is a genetic disorder causing severe gastrointestinal issues without any physical blockage, and many patients lack a clear genetic diagnosis.
  • Researchers used whole exome sequencing (WES) to analyze a patient with severe intestinal dysmotility and identified a significant gene variant thought to contribute to the condition.
  • Functional studies and a zebrafish model revealed that the gene variant leads to a loss of critical protein, impacting neuronal development in the gut and suggesting a link between this genetic alteration and the symptoms of PIPO.
View Article and Find Full Text PDF

Objectives: To improve colorectal cancer (CRC) survival and lower incidence rates, colonoscopy and/or fecal immunochemical test screening are widely implemented. Although candidate DNA methylation biomarkers have been published to improve or complement the fecal immunochemical test, clinical translation is limited. We describe technical and methodological problems encountered after a systematic literature search and provide recommendations to increase (clinical) value and decrease research waste in biomarker research.

View Article and Find Full Text PDF

Background: DNA methylation biomarkers for early detection, risk stratification and treatment response in cancer have been of great interest over the past decades. Nevertheless, clinical implementation of these biomarkers is limited, as only < 1% of the identified biomarkers is translated into a clinical or commercial setting. Technical factors such as a suboptimal genomic location of the assay and inefficient primer or probe design have been emphasized as important pitfalls in biomarker research.

View Article and Find Full Text PDF

Obesity is a complex disease with many co-morbidities, including impaired cognitive functions. Obese individuals often contain an aberrant microbiota. Via the microbiota-gut-brain axis, the altered microbiota composition can affect cognition or induce anxiety- or depressive-like behavior.

View Article and Find Full Text PDF

Hypoxia is a common feature of solid tumors and is associated with increased tumor progression, resistance to therapy and increased metastasis. Hence, tumor hypoxia is a prognostic factor independent of treatment modality. To survive hypoxia, cells activate macroautophagy/autophagy.

View Article and Find Full Text PDF

WHO grade I meningiomas occasionally show regrowth after radiosurgical treatment, which cannot be predicted by clinical features. There is increasing evidence that certain biomarkers are associated with regrowth of meningiomas. The aim of this retrospective study was to asses if these biomarkers could be of value to predict regrowth of WHO grade I meningiomas after additive radiosurgery.

View Article and Find Full Text PDF

Background: The enteric nervous system (ENS) is an extensive neural network embedded in the wall of the gastrointestinal tract that regulates digestive function and gastrointestinal homeostasis. The ENS consists of two main cell types; enteric neurons and enteric glial cells. In vitro techniques allow simplified investigation of ENS function, and different culture methods have been developed over the years helping to understand the role of ENS cells in health and disease.

View Article and Find Full Text PDF

Modeling colorectal cancer (CRC) using organoids has burgeoned in the last decade, providing enhanced in vitro models to study the development and possible treatment options for this type of cancer. In this review, we describe both normal and CRC intestinal organoid models and their utility in the cancer research field. Besides highlighting studies that develop epithelial CRC organoid models, i.

View Article and Find Full Text PDF

The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4 ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities.

View Article and Find Full Text PDF

Purpose: Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to DNA methylation.

Methods: DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adenocarcinoma data set consisting of normal and primary colon adenocarcinoma tissue.

View Article and Find Full Text PDF

A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation.

View Article and Find Full Text PDF

The role of the nervous system as a contributor in the tumor microenvironment has been recognized in different cancer types, including colorectal cancer (CRC). The gastrointestinal tract is a highly innervated organ system, which is not only innervated by the autonomic nervous system, but also contains an extensive nervous system of its own; the enteric nervous system (ENS). The ENS is important for gut function and homeostasis by regulating processes such as fluid absorption, blood flow, and gut motility.

View Article and Find Full Text PDF

Background: Chorioamnionitis, inflammation of the chorion and amnion, which often results from intrauterine infection, is associated with premature birth and contributes to significant neonatal morbidity and mortality, including necrotizing enterocolitis (NEC). Recently, we have shown that chronic chorioamnionitis is associated with significant structural enteric nervous system (ENS) abnormalities that may predispose to later NEC development. Understanding time point specific effects of an intra-amniotic (IA) infection on the ENS is important for further understanding the pathophysiological processes and for finding a window for optimal therapeutic strategies for an individual patient.

View Article and Find Full Text PDF

Despite the use of multimodal treatment, survival of esophageal cancer (EC) patients remains poor. One proposed explanation for the relatively poor response to cytotoxic chemotherapy is intratumor heterogeneity. The aim was to establish a statistical model to objectively measure intratumor heterogeneity of the proportion of tumor (IHPoT) and to use this newly developed method to measure IHPoT in the pretreatment biopsies from from EC patients recruited to the OE02 trial.

View Article and Find Full Text PDF

Background: Substandard and falsified medicines, mainly prevalent in low and middle-income countries (LMICs), cause avoidable morbidity and mortality, and put at stake the performance of health systems. They may be prevented by an adequate implementation of pharmaceutical Quality Assurance (QA) guidelines, but unfortunately, most guidelines address upstream stakeholders and specialized staff in the supply chain. A multi-layered approach is needed, in order to empower the health workers at the point-of-care to proactively contribute to the fight against poor-quality medicines.

View Article and Find Full Text PDF