The socially monogamous prairie vole (Microtus ochrogaster) and promiscuous meadow vole (Microtus pennsylvanicus) are closely related, but only prairie voles display long-lasting pair bonds, biparental care, and selective aggression towards unfamiliar individuals after pair bonding. These social behaviors in mammals are largely mediated by steroid hormone signaling in the social behavior network (SBN) of the brain. Hormone receptors are reproducible markers of sex differences that can provide more information than anatomy alone and can even be at odds with anatomical dimorphisms.
View Article and Find Full Text PDFMasculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored.
View Article and Find Full Text PDFRobust incorporation of new principal cells into pre-existing circuitry in the adult mammalian brain is unique to the hippocampal dentate gyrus (DG). We asked if adult-born granule cells (GCs) might act to regulate processing within the DG by modulating the substantially more abundant mature GCs. Optogenetic stimulation of a cohort of young adult-born GCs (0 to 7 weeks post-mitosis) revealed that these cells activate local GABAergic interneurons to evoke strong inhibitory input to mature GCs.
View Article and Find Full Text PDFFront Syst Neurosci
August 2015
Normal aging and exercise exert extensive, often opposing, effects on the dentate gyrus (DG) of the hippocampus altering volume, synaptic function, and behaviors. The DG is especially important for behaviors requiring pattern separation-a cognitive process that enables animals to differentiate between highly similar contextual experiences. To determine how age and exercise modulate pattern separation in an aversive setting, young, aged, and aged mice provided with a running wheel were assayed on a fear-based contextual discrimination task.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
August 2015
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis.
View Article and Find Full Text PDFAdult neurogenesis, the generation of new neurons in the adult brain, occurs in the hippocampal dentate gyrus (DG) and the olfactory bulb (OB) of all mammals, but the functions of these new neurons are not entirely clear. Originally, adult-born neurons were considered to have excitatory effects on the DG network, but recent studies suggest a net inhibitory effect. Therefore, we hypothesized that selective removal of newborn neurons would lead to increased susceptibility to the effects of a convulsant.
View Article and Find Full Text PDFAdult-born granule cells in the mammalian dentate gyrus have long been implicated in hippocampal dependent spatial learning and behavioral effects of chronic antidepressant treatment. Although recent anatomical and functional evidence indicates a dissociation of the dorsal and ventral regions of the hippocampus, it is not known if adult neurogenesis within each region specifically contributes to distinct functions or whether adult-born cells along the entire dorsoventral axis are required for these behaviors. We examined the role of distinct subpopulations of adult-born hippocampal granule cells in learning- and anxiety-related behaviors using low-dose focal x-irradiation directed specifically to the dorsal or ventral dentate gyrus.
View Article and Find Full Text PDFAdult hippocampal neurogenesis is critically implicated in rodent models of stress and anxiety as well as behavioral effects of antidepressants. Whereas similar factors such as psychiatric disorder and antidepressant administration are correlated with hippocampal volume in humans, the relationship between these factors and adult neurogenesis is less well understood. To better bridge the gap between rodent and human physiology, we examined the numbers of proliferating neural precursors and immature cells in the hippocampal dentate gyrus (DG) as well as in vivo magnetic resonance imaging (MRI)-estimated whole hippocampal volume in eight socially dominant- or subordinate-like (SL) baboons administered the antidepressant fluoxetine or vehicle.
View Article and Find Full Text PDFSelective serotonin reuptake inhibitors (SSRIs) display a delayed onset of action of several weeks. Past work in naive rats showed that 5-HT₄ receptor agonists had rapid effects on depression-related behaviors and on hippocampal neurogenesis. We decided to investigate whether 5-HT₄ receptor stimulation was necessary for the effects of SSRIs in a mouse model of anxiety/depression, and whether hippocampal neurogenesis contributed to these effects.
View Article and Find Full Text PDFCell Stem Cell
February 2013
Wnt signaling plays a critical role in developmental and adult neurogenesis. In this issue of Cell Stem Cell, Jang et al. (2013) and Seib et al.
View Article and Find Full Text PDFSex steroid hormones exert a profound influence on the sexual differentiation and function of the neural circuits that mediate dimorphic behaviors. Both estrogen and testosterone are essential for male typical behaviors in many species. Recent studies with genetically modified mice provide important new insights into the logic whereby these two hormones coordinate the display of sexually dimorphic behaviors: estrogen sets up the masculine repertoire of sexual and territorial behaviors and testosterone controls the extent of these male displays.
View Article and Find Full Text PDFTestosterone and estrogen are essential for male behaviors in vertebrates. How these two signaling pathways interact to control masculinization of the brain and behavior remains to be established. Circulating testosterone activates the androgen receptor (AR) and also serves as the source of estrogen in the brain.
View Article and Find Full Text PDFSex hormones are essential for neural circuit development and sex-specific behaviors. Male behaviors require both testosterone and estrogen, but it is unclear how the two hormonal pathways intersect. Circulating testosterone activates the androgen receptor (AR) and is also converted into estrogen in the brain via aromatase.
View Article and Find Full Text PDF