Publications by authors named "Melody Swartz"

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

The use of a patient's own immune or tumor cells, manipulated ex vivo, enables Ag- or patient-specific immunotherapy. Despite some clinical successes, there remain significant barriers to efficacy, broad patient population applicability, and safety. Immunotherapies that target specific tumor Ags, such as chimeric Ag receptor T cells and some dendritic cell vaccines, can mount robust immune responses against immunodominant Ags, but evolving tumor heterogeneity and antigenic downregulation can drive resistance.

View Article and Find Full Text PDF

Cancer immunotherapy is moving toward combination regimens with agents of complementary mechanisms of action to achieve more frequent and robust efficacy. However, compared with single-agent therapies, combination immunotherapies are associated with increased overall toxicity because the very same mechanisms also work in concert to enhance systemic inflammation and promote off-tumor toxicity. Therefore, rational design of combination regimens that achieve improved antitumor control without exacerbated toxicity is a main objective in combination immunotherapy.

View Article and Find Full Text PDF

Immune checkpoint immunotherapy (ICI) can re-activate immune reactions against neoantigens, leading to remarkable remission in cancer patients. Nevertheless, only a minority of patients are responsive to ICI, and approaches for prediction of responsiveness are needed to improve the success of cancer treatments. While the tumor mutational burden (TMB) correlates positively with responsiveness and survival of patients undergoing ICI, the influence of the subcellular localizations of the neoantigens remains unclear.

View Article and Find Full Text PDF

Lymphatic endothelial cells (LECs) express MHC class II (MHC-II) upon IFN-γ stimulation, yet recent evidence suggests that LECs cannot activate naive or memory CD4+ T cells. In this article, we show that IFN-γ-activated human dermal LECs can robustly reactivate allogeneic human memory CD4+ T cells (hCD4+ TMs), but only when TGF-β signaling is inhibited. We found that in addition to upregulating MHC-II, IFN-γ also induces LECs to upregulate glycoprotein A repetitions predominant, which anchors latent TGF-β to the membrane and potentially inhibits T cell activation.

View Article and Find Full Text PDF

Dendritic cell (DC) activation via pathogen-associated molecular patterns (PAMPs) is critical for antigen presentation and development of adaptive immune responses, but the stochastic distribution of DC responses to PAMP signaling, especially during the initial stages of immune activation, is poorly understood. In this study, we isolate a unique DC subpopulation via preferential phagocytosis of microparticles (MPs) and characterize this subpopulation of "first responders" (FRs). We present results that show these cells (1) can be isolated and studied via both increased accumulation of the micron-sized particles and combinations of cell surface markers, (2) show increased responses to PAMPs, (3) facilitate adaptive immune responses by providing the initial paracrine signaling, and (4) can be selectively targeted by vaccines to modulate both antibody and T cell responses in vivo.

View Article and Find Full Text PDF

Immune stimulating agents like Toll-like receptor 7 (TLR7) agonists induce potent antitumor immunity but are limited in their therapeutic window due to off-target immune activation. Here, we developed a polymeric delivery platform that binds excess unpaired cysteines on tumor cell surfaces and debris to adjuvant tumor neoantigens as an vaccine. The metabolic and enzymatic dysregulation in the tumor microenvironment produces these exofacial free thiols, which can undergo efficient disulfide exchange with thiol-reactive pyridyl disulfide moieties upon intratumoral injection.

View Article and Find Full Text PDF

Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation, and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme 2 (ACE2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized patients with COVID-19 developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity.

View Article and Find Full Text PDF

Clinical manifestations of severe COVID-19 include coagulopathies that are exacerbated by the formation of neutrophil extracellular traps (NETs). Here, we report that pulmonary lymphatic vessels, which traffic neutrophils and other immune cells to the lung-draining lymph node (LDLN), can also be blocked by fibrin clots in severe COVID-19. Immunostained tissue sections from COVID-19 decedents revealed widespread lymphatic clotting not only in the lung but also in the LDLN, where the extent of clotting correlated with the presence of abnormal, regressed, or missing germinal centers (GCs).

View Article and Find Full Text PDF

Immune-checkpoint inhibitors have shown modest efficacy against immunologically 'cold' tumours. Interleukin-12 (IL-12)-a cytokine that promotes the recruitment of immune cells into tumours as well as immune cell activation, also in cold tumours-can cause severe immune-related adverse events in patients. Here, by exploiting the preferential overexpression of proteases in tumours, we show that fusing a domain of the IL-12 receptor to IL-12 via a linker cleavable by tumour-associated proteases largely restricts the pro-inflammatory effects of IL-12 to tumour sites.

View Article and Find Full Text PDF

Lymphatic vessels provide a critical line of communication between peripheral tissues and their draining lymph nodes, which is necessary for robust immune responses against infectious agents. At the same time, lymphatics help shape the nature and kinetics of immune responses to ensure resolution, limit tissue damage, and prevent autoimmune responses. A variety of pathogens have developed strategies to exploit these functions, from multicellular organisms like nematodes to bacteria, viruses, and prions.

View Article and Find Full Text PDF

Patients infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme-2 (ACE-2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized COVID-19 patients developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity.

View Article and Find Full Text PDF

Immunotherapies are designed to treat disease by modulating the activity of immune cells. Here, we consider how anatomy and microphysiology create transport barriers to immunotherapeutic delivery and retention at diseased sites, and summarize recent developments to overcome these barriers by exploiting immunobiology to engineer molecular and cellular engineering approaches. Creating impactful and practical solutions across these diseases requires the integration of the collective expertise of pathologists, clinicians, immunologists, biophysicists, immunoengineers, and more.

View Article and Find Full Text PDF

The SARS-CoV-2 virus has caused an unprecedented global crisis, and curtailing its spread requires an effective vaccine which elicits a diverse and robust immune response. We have previously shown that vaccines made of a polymeric glyco-adjuvant conjugated to an antigen were effective in triggering such a response in other disease models and hypothesized that the technology could be adapted to create an effective vaccine against SARS-CoV-2. The core of the vaccine platform is the copolymer p(Man-TLR7), composed of monomers with pendant mannose or a toll-like receptor 7 (TLR7) agonist.

View Article and Find Full Text PDF

Inverse vaccines that tolerogenically target antigens to antigen-presenting cells (APCs) offer promise in prevention of immunity to allergens and protein drugs and treatment of autoimmunity. We have previously shown that targeting hepatic APCs through intravenous injection of synthetically glycosylated antigen leads to effective induction of antigen-specific immunological tolerance. Here, we demonstrate that targeting these glycoconjugates to lymph node (LN) APCs under homeostatic conditions leads to local and increased accumulation in the LNs compared to unmodified antigen and induces a tolerogenic state both locally and systemically.

View Article and Find Full Text PDF

The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle.

View Article and Find Full Text PDF
Article Synopsis
  • * In experiments using mouse models, the absence of MHC class II in LECs led to reduced tumor growth and enhanced responses from effector T-cells, indicating an important local role for LECs in maintaining Treg suppressive functions within tumors.
  • * The study highlights that MHC class II-restricted antigen presentation by LECs is crucial for regulating Tregs locally in the tumor environment, acting as a barrier against effective T-cell-mediated immune responses.
View Article and Find Full Text PDF

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBD) compared to RBD-encapsulated polymersomes (RBD) and unformulated RBD (RBD), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant.

View Article and Find Full Text PDF

In melanoma, the induction of lymphatic growth (lymphangiogenesis) has long been correlated with metastasis and poor prognosis, but we recently showed it can synergistically enhance cancer immunotherapy and boost T cell immunity. Here, we develop a translational approach for exploiting this "lymphangiogenic potentiation" of immunotherapy in a cancer vaccine using lethally irradiated tumor cells overexpressing vascular endothelial growth factor C (VEGF-C) and topical adjuvants. Our "VEGFC vax" induced extensive local lymphangiogenesis and promoted stronger T cell activation in both the intradermal vaccine site and draining lymph nodes, resulting in higher frequencies of antigen-specific T cells present systemically than control vaccines.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is a major autoimmune disease that causes synovitis and joint damage. Although clinical trials have been performed using interleukin-10 (IL-10), an antiinflammatory cytokine, as a potential treatment of RA, the therapeutic effects of IL-10 have been limited, potentially due to insufficient residence in lymphoid organs, where antigen recognition primarily occurs. This study was undertaken to engineer an IL-10-serum albumin (SA) fusion protein and evaluate its effects in 2 murine models of RA.

View Article and Find Full Text PDF

Interleukin-4 (IL-4) suppresses the development of multiple sclerosis in a murine model of experimental autoimmune encephalomyelitis (EAE). Here, we show that, in mice with EAE, the accumulation and persistence in the lymph nodes and spleen of a systemically administered serum albumin (SA)-IL-4 fusion protein leads to higher efficacy in preventing disease development than the administration of wild-type IL-4 or of the clinically approved drug fingolimod. We also show that the SA-IL-4 fusion protein prevents immune-cell infiltration in the spinal cord, decreases integrin expression in antigen-specific CD4 T cells, increases the number of granulocyte-like myeloid-derived suppressor cells (and their expression of programmed-death-ligand-1) in spinal cord-draining lymph nodes and decreases the number of T helper 17 cells, a pathogenic cell population in EAE.

View Article and Find Full Text PDF

In allergic airway inflammation, VEGFR-3-mediated lymphangiogenesis occurs in humans and mouse models, yet its immunological roles, particularly in adaptive immunity, are poorly understood. Here, we explored how pro-lymphangiogenic signaling affects the allergic response to house dust mite (HDM). In the acute inflammatory phase, the lungs of mice treated with blocking antibodies against VEGFR-3 (mF4-31C1) displayed less inflammation overall, with dramatically reduced innate and T-cell numbers and reduced inflammatory chemokine levels.

View Article and Find Full Text PDF

Checkpoint-inhibitor (CPI) immunotherapy has achieved remarkable clinical success, yet its efficacy in 'immunologically cold' tumours has been modest. Interleukin-12 (IL-12) is a powerful cytokine that activates the innate and adaptive arms of the immune system; however, the administration of IL-12 has been associated with immune-related adverse events. Here we show that, after intravenous administration of a collagen-binding domain fused to IL-12 (CBD-IL-12) in mice bearing aggressive mouse tumours, CBD-IL-12 accumulates in the tumour stroma due to exposed collagen in the disordered tumour vasculature.

View Article and Find Full Text PDF

Therapeutic cancer vaccines constitute a valuable tool to educate the immune system to fight tumors and prevent cancer relapse. Nevertheless, the number of cancer vaccines in the clinic remains very limited to date, highlighting the need for further technology development. Recently, cancer vaccines have been improved by the use of materials, which can strongly enhance their intrinsic properties and biodistribution profile.

View Article and Find Full Text PDF