Publications by authors named "Melody Devos"

The ovary is the first organ to age in the human body, affecting both fertility and overall health. However, the biological mechanisms underlying human ovarian aging remain poorly understood. Here we present a comprehensive single-nuclei multi-omics atlas of four young (ages 23-29 years) and four reproductively aged (ages 49-54 years) human ovaries.

View Article and Find Full Text PDF

Hereditary cancers mostly affect the adolescent and young adult population (AYA) at reproductive age. Mutations in () genes are responsible for the majority of cases of hereditary breast and ovarian cancer. and act as tumor suppressor genes as they are key regulators of DNA repair through homologous recombination.

View Article and Find Full Text PDF

The Hippo pathway plays a crucial role in the regulation of follicular activation, which constitutes the first step of the folliculogenesis process. Disruption of this pathway occurs in several non-physiological contexts, after fragmentation for ovarian tissue cryopreservation procedures or chemotherapy exposure, leading to massive follicular growth and depletion. This study aimed to investigate the effect of controlling the Hippo pathway using verteporfin (VERT) during in vitro ovarian culture and to evaluate its potential preventive effects on chemotherapy-induced follicle activation using a mouse model.

View Article and Find Full Text PDF

The ovary is a heterogeneous organ composed of different cell types. To study the molecular mechanisms occurring during folliculogenesis, the localization of proteins and gene expression can be performed on fixed tissue. However, to properly assess gene expression levels in a human follicle, this complex and delicate structure must be isolated.

View Article and Find Full Text PDF

Study Question: Does chemotherapy exposure prior to ovarian tissue cryopreservation (OTC) impact the signaling pathways governing follicle activation and survival for prepubertal and postpubertal patients?

Summary Answer: Chemotherapy exposure prior OTC increases follicle apoptosis rates but not follicular activation, although the PI3K/AKT/mTOR and Hippo signaling pathways were modified in the cortex.

What Is Known Already: OTC is currently the only available fertility preservation procedure for children and for patients who have already started their treatment. While previous studies have not observed harmful impacts of first chemotherapy exposure on OTC outcomes, the consequences of treatment on follicle activation and survival need to be further investigated.

View Article and Find Full Text PDF

In recent years, ovarian tissue cryopreservation has rapidly developed as a successful method for preserving the fertility of girls and young women with cancer or benign conditions requiring gonadotoxic therapy, and is now becoming widely recognized as an effective alternative to oocyte and embryo freezing when not feasible. Primordial follicles are the most abundant population of follicles in the ovary, and their relatively quiescent metabolism makes them more resistant to cryoinjury. This dormant pool represents a key target for fertility preservation strategies as a resource for generating high-quality oocytes.

View Article and Find Full Text PDF

Understanding and control of the massive and accelerated follicular growth that occurs during in vitro culture of ovarian tissue is a crucial step toward the development of efficient culture systems that offer an attractive alternative to ovarian tissue transplantation for fertility restoration in cancer survivors. One outstanding question focuses on processes that occur prior to cryopreservation, such as tissue sectioning or chemotherapeutic treatment, might exacerbate this follicular activation. Although the PI3K/AKT/mTOR pathway is well known as a major trigger of physiological and chemotherapy-induced follicular activation, studies have shown that disruption of Hippo pathway due to ovarian fragmentation acts as an additional stimulator.

View Article and Find Full Text PDF