Publications by authors named "Melody A Diamond"

Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models.

View Article and Find Full Text PDF

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules.

View Article and Find Full Text PDF

Polo-like kinase 1 (Plk1) is a conserved serine/threonine kinase that plays an essential role in regulating the many processes involved in mitotic entry and progression. In humans, Plk1 is expressed primarily during late G(2) and M phases and, in conjunction with Cdk1/cyclin B1, acts as master regulatory kinases for the myriad protein substrates involved in mitosis. Plk1 overexpression is strongly associated with cancer and has been correlated with poor prognosis in a broad range of human tumor types.

View Article and Find Full Text PDF

Kinesin spindle protein (KSP), an ATPase responsible for spindle pole separation during mitosis that is present only in proliferating cells, has become a novel and attractive anticancer target with potential for reduced side effects compared to currently available therapies. We report herein the discovery of the first known ATP-competitive inhibitors of KSP, which display a unique activity profile as compared to the known loop 5 (L5) allosteric KSP inhibitors that are currently under clinical evaluation. Optimization of this series led to the identification of biphenyl sulfamide 20, a potent KSP inhibitor with in vitro antiproliferative activity against human cells with either wild-type KSP (HCT116) or mutant KSP (HCT116 D130V).

View Article and Find Full Text PDF

The oncoprotein hdm2 ubiquitinates p53, resulting in the rapid degradation of p53 through the ubiquitin (Ub)-proteasome pathway. Hdm2-mediated destabilization and inactivation of p53 are thought to play a critical role in a number of human cancers. We have used an in vitro enzyme assay, monitoring hdm2-catalyzed Ub transfer from preconjugated Ub-Ubc4 to p53, to identify small molecule inhibitors of this enzyme.

View Article and Find Full Text PDF