Publications by authors named "Melodie A McGeoch"

With large wildfires becoming more frequent, we must rapidly learn how megafires impact biodiversity to prioritize mitigation and improve policy. A key challenge is to discover how interactions among fire-regime components, drought and land tenure shape wildfire impacts. The globally unprecedented 2019-2020 Australian megafires burnt more than 10 million hectares, prompting major investment in biodiversity monitoring.

View Article and Find Full Text PDF

The relationship between global trait distinctiveness and geographic range size is an emerging pattern of interest in macroecology. Early observations suggested that the relationship was positive, implying that globally widespread species hold the rarest combinations of traits. Here, we formally describe and test the relationship in the world's birds and consider its implications for global functional diversity and redundancy.

View Article and Find Full Text PDF
Article Synopsis
  • The IPBES invasive alien species assessment is the first comprehensive global review focusing on the threats posed by invasive species to biodiversity and human wellbeing, synthesizing over 13,000 scientific and local knowledge sources.
  • It reveals significant and escalating threats from invasive alien species and outlines practical management strategies for addressing these challenges.
  • The assessment has garnered support from 143 member states, urging immediate action against biological invasions to protect ecosystems and communities worldwide.
View Article and Find Full Text PDF

Human-induced global changes, including anthropogenic climate change, biotic globalization, trophic downgrading and pervasive land-use intensification, are transforming Earth's biosphere, placing biodiversity and ecosystems at the forefront of unprecedented challenges. The Anthropocene, characterized by the importance of in shaping the Earth system, necessitates a re-evaluation of our understanding and stewardship of ecosystems. This theme issue delves into the multifaceted challenges posed by the ongoing ecological planetary transformation and explores potential solutions across four key subthemes.

View Article and Find Full Text PDF

In 2050, most areas of biodiversity significance will be heavily influenced by multiple drivers of environmental change. This includes overlap with the introduced ranges of many alien species that negatively impact biodiversity. With the decline in biodiversity and increase in all forms of global change, the need to envision the desired qualities of natural systems in the Anthropocene is growing, as is the need to actively maintain their natural values.

View Article and Find Full Text PDF

Monitoring the extent to which invasive alien species (IAS) negatively impact the environment is crucial for understanding and mitigating biological invasions. Indeed, such information is vital for achieving Target 6 of the Kunming-Montreal Global Biodiversity Framework. However, to-date indicators for tracking the environmental impacts of IAS have been either lacking or insufficient.

View Article and Find Full Text PDF

Inclusivity is fundamental to progress in understanding and addressing the global phenomena of biological invasions because inclusivity fosters a breadth of perspectives, knowledge, and solutions. Here, we report on how the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment on invasive alien species (IAS) prioritized inclusivity, the benefits of this approach, and the remaining challenges.

View Article and Find Full Text PDF

All aspects of biodiversity research, from taxonomy to conservation, rely on data associated with species names. Effective integration of names across multiple fields is paramount and depends on the coordination and organization of taxonomic data. We assess current efforts and find that even key applications for well-studied taxa still lack commonality in taxonomic information required for integration.

View Article and Find Full Text PDF

Invasive alien insects are an important yet understudied component of the general threat that biological invasions pose to biodiversity. We quantified the breadth and level of this threat by performing environmental impact assessments using a modified version of the Environmental Impact Assessment for Alien Taxa (EICAT) framework. This represents the largest effort to date on quantify the environmental impacts of invasive alien insects.

View Article and Find Full Text PDF

Open data on biological invasions are particularly critical in regions that are co-governed and/or where multiple independent parties have responsibility for preventing and controlling invasive alien species. The Antarctic is one such region where, in spite of multiple examples of invasion policy and management success, open, centralised data are not yet available. This dataset provides current and comprehensive information available on the identity, localities, establishment, eradication status, dates of introduction, habitat, and evidence of impact of known introduced and invasive alien species for the terrestrial and freshwater Antarctic and Southern Ocean region.

View Article and Find Full Text PDF
Article Synopsis
  • The paper introduces GIRAE (Generalised Impact = Range size × Abundance × per-unit Effect) as a method to estimate the total impact of alien species by examining their range, how abundant they are, and their specific effects on the environment.
  • Two approaches to apply GIRAE are proposed: the species-specific method which focuses on individual species at various sites, and the multi-species method which aggregates data across multiple species, making it easier to apply but less precise than the first.
  • Using South African data on plant invasion management costs, the study reveals significant variations in expenditure per area for different species, emphasizing the practical application of GIRAE in managing biological invasions.
View Article and Find Full Text PDF

The Country Compendium of the Global Register of Introduced and Invasive Species (GRIIS) is a collation of data across 196 individual country checklists of alien species, along with a designation of those species with evidence of impact at a country level. The Compendium provides a baseline for monitoring the distribution and invasion status of all major taxonomic groups, and can be used for the purpose of global analyses of introduced (alien, non-native, exotic) and invasive species (invasive alien species), including regional, single and multi-species taxon assessments and comparisons. It enables exploration of gaps and inferred absences of species across countries, and also provides one means for updating individual GRIIS Checklists.

View Article and Find Full Text PDF

Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in the hundreds of billions of U.S. dollars annually.

View Article and Find Full Text PDF

Community and invasion ecology have mostly grown independently. There is substantial overlap in the processes captured by different models in the two fields, and various frameworks have been developed to reduce this redundancy and synthesize information content. Despite broad recognition that community and invasion ecology are interconnected, a process-based framework synthesizing models across these two fields is lacking.

View Article and Find Full Text PDF

Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions.

View Article and Find Full Text PDF

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km , from Australia's coral reefs to terrestrial Antarctica.

View Article and Find Full Text PDF

Where interspecific facilitation favors the establishment of high densities of a beneficiary species, strong intraspecific competition may subsequently impede beneficiary performance. Consequently, the negative influence of intraspecific competition between beneficiary individuals could potentially outweigh the positive influence of interspecific facilitation when, for example, higher densities of a beneficiary are negated by the negative effect of crowding on beneficiary reproduction. The aim of this study was, therefore, to examine the impact of an interspecific interaction on the outcome of intraspecific interactions within the context of plant-plant facilitation.

View Article and Find Full Text PDF

Bacteria have been inferred to exhibit relatively weak biogeographic patterns. To what extent such findings reflect true biological phenomena or methodological artifacts remains unclear. Here, we addressed this question by analyzing the turnover of soil bacterial communities from three data sets.

View Article and Find Full Text PDF

As global climates change, alien species are anticipated to have a growing advantage relative to their indigenous counterparts, mediated through consistent trait differences between the groups. These insights have largely been developed based on interspecific comparisons using multiple species examined from different locations. Whether such consistent physiological trait differences are present within assemblages is not well understood, especially for animals.

View Article and Find Full Text PDF

Background And Aims: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses.

View Article and Find Full Text PDF

Incidence, or compositional, matrices are generated for a broad range of research applications in biology. Zeta diversity provides a common currency and conceptual framework that links incidence-based metrics with multiple patterns of interest in biology, ecology, and biodiversity science. It quantifies the variation in species (or OTU) composition of multiple assemblages (or cases) in space or time, to capture the contribution of the full suite of narrow, intermediate, and wide-ranging species to biotic heterogeneity.

View Article and Find Full Text PDF

The distribution of genetic variation in species is governed by factors that act differently across spatial scales. To tease apart the contribution of different processes, especially at intermediate spatial scales, it is useful to study simple ecosystems such as those on sub-Antarctic oceanic islands. In this study, we characterize spatial genetic patterns of two keystone plant species, Azorella selago on sub-Antarctic Marion Island and Azorella macquariensis on sub-Antarctic Macquarie Island.

View Article and Find Full Text PDF

Species distributions and abundances are undergoing rapid changes worldwide. This highlights the significance of reliable, integrated information for guiding and assessing actions and policies aimed at managing and sustaining the many functions and benefits of species. Here we synthesize the types of data and approaches that are required to achieve such an integration and conceptualize 'essential biodiversity variables' (EBVs) for a unified global capture of species populations in space and time.

View Article and Find Full Text PDF

The accurate estimation of interaction network structure is essential for understanding network stability and function. A growing number of studies evaluate under-sampling as the degree of sampling completeness (proportional richness observed). How the relationship between network structural metrics and sampling completeness varies across networks of different sizes remains unclear, but this relationship has implications for the within- and between-system comparability of network structure.

View Article and Find Full Text PDF

Human modification of the environment is driving declines in population size and distributional extent of much of the world's biota. These declines extend to many of the most abundant and widespread species, for which proportionally small declines can result in the loss of vast numbers of individuals, biomass, and interactions. These losses could have major localized effects on ecological and cultural processes and services without elevating a species' global extinction risk.

View Article and Find Full Text PDF