Publications by authors named "Mellet P"

Article Synopsis
  • Dynamic covalent bonding (DCB) is gaining attention in materials science for its potential in drug development targeting tropical parasitic diseases like malaria and bilharziasis.
  • Recent findings indicate that certain alkoxyamines, which showcase DCB, demonstrate significant effectiveness against these parasites, achieving 100% mortality in worms and specific inhibitory concentrations.
  • The research utilizes both enzymatic-physical and enzymatic-chemical activation methods to enhance the efficacy of alkoxyamines, with the enzymatic component ensuring targeted drug action.
View Article and Find Full Text PDF

The ability to track altered enzyme activity using a non-invasive imaging protocol is crucial for the early diagnosis of many diseases but is often challenging. Herein, we show that Overhauser magnetic resonance imaging (OMRI) can be used to monitor enzymatic conversion at an ultra-low field (206 μT) using a highly sensitive "off/on" probe with a nitroxide stable radical containing ester, named T2C-T80. This TEMPO derivative containing probe forms stable electron paramagnetic resonance (EPR) silent micelles in water that are hydrolysed by esterases, thus yielding narrow EPR signals whose intensities correlate directly with specific enzymatic activity.

View Article and Find Full Text PDF

In search of better specificity and lower chances of resistance, protease-activatable alkoxyamine prodrugs to fight cancer have been proposed. These molecules are made of a peptide linked to an alkoxyamine. Proteolysis of the peptide converts the stable prodrug at 37 °C to a metastable alkoxyamine that spontaneously homolyzes into two free radicals: a stable nitroxide and a very reactive alkyl radical.

View Article and Find Full Text PDF

The expansion of drug resistant parasites sheds a serious concern on several neglected parasitic diseases. Our recent results on cancer led us to envision the use of peptide-alkoxyamines as a highly selective and efficient new drug against schistosome adult worms, the etiological agents of schistosomiasis. Indeed, the peptide tag of the hybrid compounds can be hydrolyzed by worm's digestive enzymes to afford a highly labile alkoxyamine which homolyzes spontaneously and instantaneously into radicals-which are then used as a drug against Schistosome adult parasites.

View Article and Find Full Text PDF

The emergence and spread of drug-resistant parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against .

View Article and Find Full Text PDF

This work aims at developing a diagnostic method based on Electron Paramagnetic Resonance (EPR) measurements of stable nitroxide radicals released from "EPR silent" liposomes. The liposome destabilisation and consequent radical release is enzymatically triggered by the action of phospholipase A2 (PLA2) present in the biological sample of interest. PLA2 are involved in a broad range of processes, and changes in their activity may be considered as a unique valuable biomarker for early diagnoses.

View Article and Find Full Text PDF

Development of very-low field MRI is an active area of research. It aims at reducing operating costs and improve portability. However, the signal-to-noise issue becomes prominent at ultra-low field (<1 mT), especially for molecular imaging purposes that addresses specific biochemical events.

View Article and Find Full Text PDF

Current chemotherapies suffer low specificity and sometimes drug resistance. Neutrophil elastase activity in cancer is associated with poor prognosis and metastasis settlement. More generally, tumors harbor various and persistent protease activities unseen in healthy tissues.

View Article and Find Full Text PDF

Cost-effective and portable MRI systems operating at Earth-field would be helpful in poorly accessible areas or in developing nations. Furthermore Earth-field MRI can provide new contrasts opening the way to the observation of pathologies at the biochemical level. However low-field MRI suffers from a dramatic lack in detection sensitivity even worsened for molecular imaging purposes where biochemical specificity requires detection of dilute compounds.

View Article and Find Full Text PDF

Pulmonary inflammation usually involves strong neutrophil recruitment with a marked release of proteases such as neutrophil elastase (NE). Noninvasive in vivo assessment of unregulated elastase activity in the lungs would provide a valuable diagnostic tool. Here, it is proposed to use Overhauser-enhanced magnetic resonance imaging (OMRI) in mice where inflammation was induced by the instillation of lipopolysaccharide (LPS).

View Article and Find Full Text PDF

In 1986, Rizzardo et al. discovered the nitroxide-mediated polymerization which relies on the reversibility of homolysis of the C-ON bond of alkoxyamine RRNOR, a unique property of these molecules. This discovery has generated a tremendous endeavor in the field of polymer chemistry.

View Article and Find Full Text PDF

The last few decades of protease research has confirmed that a number of important biological processes are strictly dependent on proteolysis. Neutrophil elastase (NE) is a critical protease in immune response and host defense mechanisms in both physiological and disease-associated conditions. Particularly, NE has been identified as a promising biomarker for early diagnosis of lung inflammation.

View Article and Find Full Text PDF

While optical methods are not efficient enough for the easy, fast, and efficient detection of enzymatic activity in turbid media, the properties of the electron paramagnetic resonance (EPR) technique make it suitable for use in such media. Nitroxides which exhibit a change in their EPR hyperfine coupling constants upon enzymatic activity and are selective to lipases were developed under the name of shifting-nitroxides. Several fatty acids, exhibiting saturated and unsaturated chains of various lengths, were coupled with the shifting-nitroxide via an enol ester link and tested against several lipases.

View Article and Find Full Text PDF

Pulmonary inflammatory diseases are a major burden worldwide. They have in common an influx of neutrophils. Neutrophils secrete unchecked proteases at inflammation sites consequently leading to a protease/inhibitor imbalance.

View Article and Find Full Text PDF

A nitroxide carrying a peptide specific to the binding pocket of the serine proteases chymotrypsin and cathepsin G is prepared. This peptide is attached as an enol ester to the nitroxide. Upon enzymatic hydrolysis of the peptide, the enol ester moiety is transformed into a ketone moiety.

View Article and Find Full Text PDF

Recently, we showed that the phosphorus hyperfine coupling constant aPβ of persistent cyclic nitroxides decreased with the normalized polarity Reichardt's constant E. Thus, we investigated the changes in aPβ in binary mixtures of solvents. The sensitivity of aPβ to the solvent was high enough to allow us to perform water titration in THF, 1,4-dioxane, and acetonitrile by EPR.

View Article and Find Full Text PDF

In vivo investigations of enzymatic processes using non-invasive approaches are a long-lasting challenge. Recently, we showed that Overhauser-enhanced MRI is suitable to such a purpose. A β-phosphorylated nitroxide substrate prototype exhibiting keto-enol equilibrium upon enzymatic activity has been prepared.

View Article and Find Full Text PDF

Theranostics combines therapeutic and diagnostic or drug deposition monitoring abilities of suitable molecules. Here we describe the first steps of building an alkoxyamine-based theranostic agent against cancer. The labile alkoxyamine ALK-1 (t(1/2) = 50 min at 37 °C) cleaves spontaneously to generate (1) a highly reactive free alkyl radical used as therapeutic agents to induce cell damages leading to cell death and (2) a stable nitroxide used as contrast agent for Overhauser-enhanced magnetic resonance imaging (OMRI).

View Article and Find Full Text PDF

There is an increasing interest in developing novel imaging strategies for sensing proteolytic activities in intact organisms in vivo. Overhauser-enhanced MRI (OMRI) offers the possibility to reveal the proteolysis of nitroxide-labeled macromolecules thanks to a sharp decrease of the rotational correlation time of the nitroxide moiety upon cleavage. In this paper, this concept is illustrated in vivo at 0.

View Article and Find Full Text PDF

Cellular density is a parameter measured for glioma grade and invasiveness diagnosis. The characterization of the cellular density can be performed, non invasively, by magnetic resonance imaging (MRI), since, this technique displays a good resolution. Nevertheless MRI sensitivity is critical.

View Article and Find Full Text PDF

Development of anti-cancerous theranostic agents is a vivid field. This article describes a theranostic approach that relies on the triggering of cancer cell death by generation of alkyl radicals at the right place and at the right time using the presence of active proteases in the tumour environment. Alkoxyamines (R(1)R(2)NOR(3)) are labile molecules that homolyze into nitroxides (R(1)R(2)NO˙) and reactive alkyl radicals (R(3)˙).

View Article and Find Full Text PDF

Background: Magnetic resonance imaging can reveal exquisite anatomical details. However several diseases would benefit from an imaging technique able to specifically detect biochemical alterations. In this context protease activity imaging is one of the most promising areas of research.

View Article and Find Full Text PDF

Overhauser-enhanced MRI (OMRI) offers the potentiality of detecting low-concentrated species generated by specific biological processes. However molecular imaging applications of OMRI need significant improvement in spatial localization. Here it is shown that 3D-OMRI of a free radical injected in tumor-bearing mice can be performed at high anatomical resolution at a constant field.

View Article and Find Full Text PDF

A specific mouse whole body coil and a dedicated gradient system at 4.7 T were coupled with an ultra-fast 3D gradient echo MRI and keyhole reconstruction technique to obtain 3D whole-body dynamic T(1)-weighted or T(2)*-weighted imaging. The technique was used to visualize the real-time distribution of non-targeting T(1) and T(2)* contrast agent (CA) in a glioma-bearing mouse model.

View Article and Find Full Text PDF