Drought stress impacts cotton plant growth and productivity across countries. Plants can initiate morphological, cellular, and proteomic changes to adapt to unfavorable conditions. However, our knowledge of how cotton plants respond to drought stress at the proteome level is limited.
View Article and Find Full Text PDFTransgenic rice expressing pigeonpea Cc CDR conferred high-level tolerance to different abiotic stresses. The multiple stress tolerance observed in CcCDR -transgenic lines is attributed to the modulation of ABA-dependent and-independent signalling-pathway genes. Stable transgenic plants expressing Cajanus cajan cold and drought regulatory protein encoding gene (CcCDR), under the control of CaMV35S and rd29A promoters, have been generated in indica rice.
View Article and Find Full Text PDFIn this study, we report the overexpression of Cajanus cajan hybrid-proline-rich protein encoding gene (CcHyPRP) in rice which resulted in increased tolerance to both abiotic and biotic stresses. Compared to the control plants, the transgenic rice lines, expressing CcHyPRP, exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity, and heat, as evidenced by increased biomass, chlorophyll content, survival rate, root, and shoot growth.
View Article and Find Full Text PDF