Peste-des-petits-ruminants is a highly contagious and fatal disease of goats and sheep caused by non-segmented, negative strand RNA virus belonging to the Morbillivirus genus-Peste-des-petits-ruminants virus (PPRV) which is evolutionarily closely related to Rinderpest virus (RPV). The large protein 'L' of the members of this genus is a multifunctional catalytic protein, which transcribes and replicates the viral genomic RNA as well as possesses mRNA capping, methylation and polyadenylation activities; however, the detailed mechanism of mRNA capping by PPRV L protein has not been studied. We have found earlier that the L protein of RPV has RNA triphosphatase (RTPase), guanylyltransferase (GTase) and methyltransferase activities, and unlike vesicular stomatitis virus (VSV), follows the conventional pathway of mRNA capping.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a leading cause of chronic viral hepatitis, but an effective vaccine is still not available to prevent infection. Use of neutralizing antibodies could be a potential therapeutic option. In this study, the presence of anti-HCV antibodies in HCV-infected patients was assessed from 50 patients and the presence of neutralizing antibodies was examined using 'hepatitis C virus-like particles'.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2015
The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family.
View Article and Find Full Text PDFPhosphoprotein (P) of negative sense RNA viruses functions as a transcriptional transactivator of the viral polymerase (L). We report here the characterization of oligomeric P protein of rinderpest virus (RPV) and provide a structural basis for its multimerization. By size exclusion chromatography and dynamic light scattering analyses we show that bacterially expressed P protein exists as an oligomer, thus excluding the role of phosphorylation in P protein oligomerization.
View Article and Find Full Text PDF