Publications by authors named "Melissa van Tok"

The tumor necrosis factor (TNF) and IL-23/IL-17 axes are the main therapeutic targets in spondyloarthritis. Despite the clinical efficacy of blocking either pathway, monotherapy does not induce remission in all patients and its effect on new bone formation remains unclear. We aimed to study the effect of TNF and IL-17A dual inhibition on clinical disease and structural damage using the HLA-B27/human β2-microglobulin transgenic rat model of SpA.

View Article and Find Full Text PDF

Objective: IL-17A plays a major role in the pathogenesis of spondyloarthritis (SpA). Here we assessed the impact of inhibition of RAR related orphan receptor-γ (RORC), the key transcription factor controlling IL-17 production, on experimental SpA in HLA-B27 transgenic (tg) rats.

Methods: Experimental SpA was induced by immunization of HLA-B27 tg rats with heat-inactivated .

View Article and Find Full Text PDF

TNF plays a key role in immune-mediated inflammatory diseases including rheumatoid arthritis (RA) and spondyloarthritis (SpA). It remains incompletely understood how TNF can lead to different disease phenotypes such as destructive peripheral polysynovitis in RA versus axial and peripheral osteoproliferative inflammation in SpA. We observed a marked increase of transmembrane (tm) versus soluble (s) TNF in SpA versus RA together with a decrease in the enzymatic activity of ADAM17.

View Article and Find Full Text PDF

Spondyloarthritis (SpA) is characterized by inflammation, articular bone erosions and pathologic new bone formation. Targeting TNFα or IL-17A with current available therapies reduces inflammation in SpA, however, treatment of the bone pathology in SpA remains an unmet clinical need. Activation of the mammalian target Of rapamycin (mTOR) promotes IL-17A expression and osteogenesis.

View Article and Find Full Text PDF

Objective: It remains unclear if and how inflammation and new bone formation in spondyloarthritis (SpA) are coupled. We undertook this study to assess the hypothesis that interleukin-17A (IL-17A) is a pivotal driver of both processes.

Methods: The effect of tumor necrosis factor (TNF) and IL-17A on osteogenesis was tested in an osteoblastic differentiation assay using SpA fibroblast-like synoviocytes (FLS) differentiated with dexamethasone, β-glycophosphatase, and ascorbic acid.

View Article and Find Full Text PDF

IL-17A is a central driver of spondyloarthritis (SpA), its production was originally proposed to be IL-23 dependent. Emerging preclinical and clinical evidence suggests, however, that IL-17A and IL-23 have a partially overlapping but distinct biology. We aimed to assess the extent to which IL-17A-driven pathology is IL-23 dependent in experimental SpA.

View Article and Find Full Text PDF

Spondyloarthritis (SpA) does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8 T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response.

View Article and Find Full Text PDF

Objective: The molecular mechanisms steering abnormal B cell responses in autoimmune diseases remain poorly understood. We undertook this study to identify molecular switches controlling pathologic B cell responses in rheumatoid arthritis (RA).

Methods: Candidate molecules were identified by gene expression profiling of RA synovitis and validated by quantitative polymerase chain reaction and immunohistochemistry.

View Article and Find Full Text PDF

Introduction: Insulin like growth factor (IGF)-I can act on a variety of cells involved in cartilage and bone repair, yet IGF-I has not been studied extensively in the context of inflammatory arthritis. The objective of this study was to investigate whether IGF-I overexpression in the osteoblast lineage could lead to increased reparative or pathological bone formation in rheumatoid arthritis and/or spondyloarthritis respectively.

Methods: Mice overexpressing IGF-I in the osteoblast lineage (Ob-IGF-I+/-) line 324-7 were studied during collagen induced arthritis and in the DBA/1 aging model for ankylosing enthesitis.

View Article and Find Full Text PDF

Data is presented showing expression of non-conventional (NC) heavy chain forms of B27 in synovial tissues from SpA patients. Data is presented showing the expression patterns of NC-B27 in joint, gastrointestinal and lymphoid tissues from B27 transgenic (TG(1)) rats with M. tuberculosis-induced SpA.

View Article and Find Full Text PDF

Objectives: Human leukocyte antigen (HLA)-B27 (B27) is the strongest genetic factor associated with development of Ankylosing Spondylitis and other spondyloarthropathies (SpA), yet the role it plays in disease pathogenesis remains unclear. We investigated the expression of potentially pathogenic non-conventional heavy chain forms (NC) of B27 in synovial and intestinal tissues obtained from SpA patients. We also determined the presence of NC-B27 in joints, lymphoid and gastrointestinal tissue from B27 transgenic (TG(1)) rats with M.

View Article and Find Full Text PDF

Objective: To investigate the expression and tissue distribution of Th9-related cytokines in patients with psoriatic arthritis (PsA).

Methods: Quantitative gene expression analysis of Th1, Th17, and Th9 cytokines was performed in intestinal biopsy samples obtained from patients with PsA, HLA-B27-positive patients with ankylosing spondylitis (AS), patients with Crohn's disease (CD), and healthy controls. Expression and tissue distribution of interleukin-23 (IL-23), IL-17, IL-22, IL-9, and IL-9 receptor (IL-9R) were evaluated by immunohistochemistry and confocal microscopy.

View Article and Find Full Text PDF

Objective: Melanoma inhibitory activity (MIA) is a small chondrocyte-specific protein with unknown function. MIA knockout mice (MIA(-/-)) have a normal phenotype with minor microarchitectural alterations of cartilage. Our previous study demonstrated that immunodominant epitopes of MIA are actively presented in an HLA-DR4-restricted manner in the inflamed RA joint.

View Article and Find Full Text PDF

Objective: The molecular processes driving the distinct patterns of synovial inflammation and tissue remodeling in spondylarthritis (SpA) as compared to rheumatoid arthritis (RA) remain largely unknown. Therefore, we aimed to identify novel and unsuspected disease-specific pathways in SpA by a systematic and unbiased synovial gene expression analysis.

Methods: Differentially expressed genes were identified by pan-genomic microarray and confirmed by quantitative polymerase chain reaction and immunohistochemical analyses of synovial tissue biopsy samples from patients with SpA (n=63), RA (n=28), and gout (n=9).

View Article and Find Full Text PDF

Objective: Inhibition of inflammation and destruction, but not of osteoproliferation, in patients with spondylarthritis (SpA) treated with anti-tumor necrosis factor raises the question of how these three processes are interrelated. This study was undertaken to analyze this relationship in a rat model of SpA.

Methods: Histologic spine and joint samples from HLA-B27/human β(2) -microglobulin (hβ(2) m)-transgenic rats were analyzed for signs of spondylitis and destructive arthritis and semiquantitatively scored as showing mild, moderate, or severe inflammation.

View Article and Find Full Text PDF