Unlabelled: When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2A(B55) phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z.
View Article and Find Full Text PDFAdenovirus E4orf4 protein induces the death of human cancer cells and Saccharomyces cerevisiae. Binding of E4orf4 to the B/B55/Cdc55 regulatory subunit of protein phosphatase 2A (PP2A) is required, and such binding inhibits PP2A(B55) activity leading to dose-dependent cell death. We found that E4orf4 binds across the putative substrate binding groove predicted from the crystal structure of B55α such that the substrate p107 can no longer interact with PP2A(B55α).
View Article and Find Full Text PDFThe adenovirus E4orf4 protein selectively kills human cancer cells independently of p53 and thus represents a potentially promising tool for the development of novel antitumor therapies. Previous studies suggested that E4orf4 induces an arrest or a delay in mitosis and that both this effect and subsequent cell death rely largely on an interaction with the B55 regulatory subunit of protein phosphatase 2A. In the present report, we show that the death of human H1299 lung carcinoma cells induced by expression of E4orf4 is typified not by an accumulation of cells arrested in mitosis but rather by the presence of both tetraploid and diploid cells that are arrested in G1 because they are unable to initiate DNA synthesis.
View Article and Find Full Text PDFThe human adenovirus E4orf4 protein is toxic in both human tumor cells and Saccharomyces cerevisiae. Previous studies indicated that most of this toxicity is dependent on an interaction of E4orf4 protein with the B55 class of regulatory subunits of protein phosphatase 2A (PP2A) and in yeast with the B55 homolog Cdc55. We have found previously that E4orf4 inhibits PP2A activity against at least some substrates.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) has been implicated in cell cycle progression and mitosis; however, the complexity of PP2A regulation via multiple B subunits makes its functional characterization a significant challenge. The human adenovirus protein E4orf4 has been found to induce both high Cdk1 activity and the accumulation of cells in G(2)/M in both mammalian and yeast cells, effects which are largely dependent on the B55/Cdc55 regulatory subunit of PP2A. Thus, E4orf4 represents a unique means by which the function of a specific form of PP2A can be delineated in vivo.
View Article and Find Full Text PDF