Background: There is no effective therapeutic intervention developed targeting cerebrovascular toxicity of drugs of abuse, including methamphetamine (METH). We hypothesize that exercise protects against METH-induced disruption of the blood-brain barrier (BBB) by enhancing the antioxidant capacity of cerebral microvessels and modulating caveolae-associated signaling. Mice were subjected to voluntary wheel running for 5 weeks resembling the voluntary pattern of human exercise, followed by injection with METH (10 mg/kg).
View Article and Find Full Text PDFMetastases are the leading cause of cancer mortality and their development may be affected by diet. The aim of this study was to compare the effects of dietary supplementation with different selenium (Se) compounds on the dynamics of brain metastasis development in a novel mouse model. Mice were fed experimental diets enriched (1 mg/kg) with sodium selenite (Se-S), seleno-1-methionine (Se-Meth), a yeast-derived organic form of selenium (Se-Yeast), or a control diet (Se < 0.
View Article and Find Full Text PDFEpidemiology and genetic studies indicate that patients with telomere length shorter than average are at higher risk of dying from heart disease or stroke. Telomeres are located at the ends of eukaryotic chromosomes, which demonstrate progressive length reduction in most somatic cells during aging. The enzyme telomerase can compensate for telomere loss during cell replication.
View Article and Find Full Text PDFBackground: Polychlorinated biphenyls (PCBs) are widely distributed environmental toxicants that contribute to numerous disease states. The main route of exposure to PCBs is through the gastrointestinal tract; however, little is known about the effects of PCBs on intestinal epithelial barrier functions.
Objective: The aim of the present study was to address the hypothesis that highly chlorinated PCBs can disrupt gut integrity at the level of tight junction (TJ) proteins.
Telomerase, via its catalytic component telomerase reverse transcriptase (TERT), extends telomeres of eukaryotic chromosomes. The importance of this reaction is related to the fact that telomere shortening is a rate-limiting mechanism for human life span that induces cell senescence and contributes to the development of age-related pathologies. The aim of the present study was to evaluate whether the modulation of telomerase activity can influence human immunodeficiency virus type 1 (HIV-1)-mediated dysfunction of human brain endothelial cells (hCMEC/D3 cells) and transendothelial migration of HIV-1-infected cells.
View Article and Find Full Text PDFBackground: Polychlorinated biphenyls (PCBs) comprise a ubiquitous class of toxic substances associated with carcinogenic and tumor-promoting effects as well as neurotoxic properties in the brain. However, the effects of PCBs on the development of tumor metastases are not fully understood.
Objective: We evaluated the hypothesis that exposure to individual PCB congeners can facilitate the development of brain metastases in immunocompetent mice via the disruption of the integrity of the blood-brain barrier (BBB).
Tight junctions (TJs) at the blood-brain barrier (BBB) dynamically alter paracellular diffusion of blood-borne substances from the peripheral circulation to the CNS in response to external stressors, such as pain, inflammation, and hypoxia. In this study, we investigated the effect of lambda-carrageenan-induced peripheral inflammatory pain (i.e.
View Article and Find Full Text PDFTight junctions (TJs) are major components of the blood-brain barrier (BBB) that physically obstruct the interendothelial space and restrict paracellular diffusion of blood-borne substances from the peripheral circulation to the CNS. TJs are dynamic structures whose intricate arrangement of oligomeric transmembrane and accessory proteins rapidly alters in response to external stressors to produce changes in BBB permeability. In this study, we investigate the constitutive trafficking of the TJ transmembrane proteins occludin and claudin-5 that are essential for forming the TJ seal between microvascular endothelial cells that inhibits paracellular diffusion.
View Article and Find Full Text PDFP-glycoprotein (Pgp, ABCB1) is a critical efflux transporter at the blood-brain barrier (BBB) where its luminal location and substrate promiscuity limit the brain distribution of numerous therapeutics. Moreover, Pgp is known to confer multi-drug resistance in cancer chemotherapy and brain diseases, such as epilepsy, and is highly regulated by inflammatory mediators. The involvement of inflammatory processes in neuropathological states has led us to investigate the effects of peripheral inflammatory hyperalgesia on transport properties at the BBB.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is a dynamic system which maintains brain homeostasis and limits CNS penetration via interactions of transmembrane and intracellular proteins. Inflammatory pain (IP) is a condition underlying several diseases with known BBB perturbations, including stroke, Parkinson's, multiple sclerosis and Alzheimer's. Exploring the underlying pathology of chronic IP, we demonstrated alterations in BBB paracellular permeability with correlating changes in tight junction (TJ) proteins: occludin and claudin-5.
View Article and Find Full Text PDF