Interest in white matter hyperintensities (WMH), a radiological biomarker of small vessel disease, is continuously increasing. This is, in most part, due to our better understanding of their association with various clinical disorders, such as stroke and Alzheimer's disease, and the overlapping pathology of WMH with these afflictions. Although post-mortem histological studies have reported various underlying pathophysiological substrates, in vivo research has not been specific enough to fully corroborate these findings.
View Article and Find Full Text PDFBackground: Body mass index (BMI) is increasing in a large number of elderly persons. This increase in BMI is known to put one at risk for many "diseases of aging," although less is known about how a change in BMI may affect the brains of the elderly.
Purpose: To investigate the relationship between BMI and quantitative water content, T , T *, and the semi-quantitative magnetization transfer ratio (MTR) of various structures in elderly brains.
Quantitative imaging of the human brain is of great interest in clinical research as it enables the identification of a range of MR biomarkers useful in diagnosis, treatment and prognosis of a wide spectrum of diseases. Here, a 3D two-point method for water content and relaxation time mapping is presented and compared to established gold standard methods. The method determines free water content, H2O, and the longitudinal relaxation time, T1, quantitatively from a two-point fit to the signal equation including corrections of the transmit and receive fields.
View Article and Find Full Text PDF