Publications by authors named "Melissa Savard"

Hippocampal atrophy is a well-known feature of age-related memory decline, and hippocampal subfields may contribute differently to this decline. In this cross-sectional study, we investigated the associations between hippocampal subfield volumes and performance in free recall and recognition memory tasks in both verbal and visual modalities in older adults without dementia. We collected MRIs from 97 (41 males) right-handed participants aged over 60.

View Article and Find Full Text PDF

Alzheimer's disease (AD) phenotypes might result from differences in selective vulnerability. Evidence from preclinical models suggests that tau pathology has cell-to-cell propagation properties. Therefore, here, we tested the cell-to-cell propagation framework in the amnestic, visuospatial, language, and behavioral/dysexecutive phenotypes of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the brain accumulation of amyloid-β and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-β and tau proteins.

View Article and Find Full Text PDF

The clinical and pathophysiological correlates of locus coeruleus (LC) degeneration in Alzheimer's disease (AD) could be clarified using a method to index LC integrity in vivo, neuromelanin-sensitive MRI (NM-MRI). We examined whether integrity of the LC-norepinephrine system, assessed with NM-MRI, is associated with stage of AD and with neuropsychiatric symptoms (NPS), independent of cortical pathophysiology (amyloid-β and tau burden). Cognitively normal older adults (n = 118), and individuals with mild cognitive impairment (MCI, n = 44), and AD (n = 28) underwent MR imaging and tau and amyloid-β positron emission tomography (with [F]MK6240 and [F]AZD4694, respectively).

View Article and Find Full Text PDF

Phosphorylated tau (p-tau) epitopes in cerebrospinal fluid (CSF) are accurate biomarkers for a pathological and clinical diagnosis of Alzheimer's disease (AD) and are seen to be increased in preclinical stage of the disease. However, it is unknown if these increases transpire earlier, prior to amyloid-beta (Aβ) positivity as determined by position emission tomography (PET), and if an ordinal sequence of p-tau epitopes occurs at this incipient phase METHODS: We measured CSF concentrations of p-tau181, p-tau217 and p-tau231 in 171 participants across the AD continuum who had undergone Aβ ([F]AZD4694) and tau ([F]MK6240) position emission tomography (PET) and clinical assessment FINDINGS: All CSF p-tau biomarkers were accurate predictors of cognitive impairment but CSF p-tau217 demonstrated the largest fold-changes in AD patients in comparison to non-AD dementias and cognitively unimpaired individuals. CSF p-tau231 and p-tau217 predicted Aβ and tau to a similar degree but p-tau231 attained abnormal levels first.

View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzing WM and grey-matter (GM) contributions shows that semantic symptoms are tied to short-range WM disruptions, while executive dysfunction relates to long-range WM damage, with GM playing a vital role in local cognitive processing.
  • * The findings underscore the need to consider specific WM tract disruptions and patients' vascular risk factors, as these can exacerbate executive dysfunction in individuals with FTD.
View Article and Find Full Text PDF

Background And Purpose: Abnormal mitochondrial metabolism has been described in the Alzheimer's disease (AD) brain. However, the relationship between AD pathophysiology and key mitochondrial processes remains elusive. The purpose of this study was to investigate whether mitochondrial complex I dysfunction is associated with amyloid aggregation or glucose metabolism and brain atrophy in patients with mild AD using positron emission tomography (PET).

View Article and Find Full Text PDF

Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient's disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia.

View Article and Find Full Text PDF

Tracking longitudinal tau tangles accumulation across the Alzheimer's disease continuum is crucial to better understand the natural history of tau pathology and for clinical trials. Although the available first-generation tau PET tracers detect tau accumulation in symptomatic individuals, their nanomolar affinity offers limited sensitivity to detect early tau accumulation in asymptomatic subjects. Here, we hypothesized the novel subnanomolar affinity tau tangles tracer 18F-MK-6240 can detect longitudinal tau accumulation in asymptomatic and symptomatic subjects.

View Article and Find Full Text PDF

Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer's disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([C]PBR28), amyloid-β (Aβ) ([F]AZD4694) and tau ([F]MK-6240) pathologies.

View Article and Find Full Text PDF

The apolipoprotein E gene () is the most important genetic risk factor for sporadic Alzheimer disease, with the allele being associated with increased cerebral amyloid-β and tau pathologies. Although has been suggested to have a stronger effect in women as compared to men, there is a lack of comprehensive assessment on how the interactive effect of and sex modulates regional vulnerability to tau accumulation. We previously have shown the regional vulnerability to the interactive effect of tau and , yet the sex difference was not specifically addressed.

View Article and Find Full Text PDF

Alzheimer's disease biomarkers are primarily evaluated through MRI, PET and CSF methods in order to diagnose and monitor disease. Recently, advances in the assessment of blood-based biomarkers have shown promise for simple, inexpensive, accessible and minimally invasive tools with diagnostic and prognostic value for Alzheimer's disease. Most recently, plasma phosphorylated tau181 has shown excellent performance.

View Article and Find Full Text PDF

Background: Mitochondrial electron transport chain abnormalities have been reported in postmortem pathological specimens of Alzheimer's disease (AD). However, it remains unclear how amyloid and tau are associated with mitochondrial dysfunction in vivo. The purpose of this study is to assess the local relationships between mitochondrial dysfunction and AD pathophysiology in mild AD using the novel mitochondrial complex I PET imaging agent [F]BCPP-EF.

View Article and Find Full Text PDF

Background: Neuropsychiatric symptoms (NPS) are frequent in aging and Alzheimer's disease (AD). Here we study the relationship between NPS and AD pathologies in vivo.

Method: Two hundred and twenty-one individuals from the TRIAD cohort (143 cognitively unimpaired, 52 mild cognitive impairment, and 26 AD) underwent [F]MK6240-tau-positron emission tomography (PET), [F]AZD4694-amyloid-PET, magnetic resonance imaging, and neuropsychological evaluations.

View Article and Find Full Text PDF

Background: To investigate the association of plasma pTau181, assessed with a new immunoassay, with neurodegeneration of white matter and gray matter cross-sectionally and longitudinally, in aging and Alzheimer's disease.

Methods: Observational data was obtained from the Alzheimer's Disease Neuroimaging Initiative, in which participants underwent plasma assessment and magnetic resonance imaging. Based on their clinical diagnosis, participants were classified as cognitively unimpaired and cognitively impaired.

View Article and Find Full Text PDF

Objective: To assess the frequency of biologically defined Alzheimer disease (AD) in relation to age, sex, ε4, and clinical diagnosis in a prospective cohort study evaluated with amyloid-PET and tau-PET.

Methods: We assessed cognitively unimpaired (CU) elderly (n = 166), patients with amnestic mild cognitive impairment (n = 77), and patients with probable AD dementia (n = 62) who underwent evaluation by dementia specialists and neuropsychologists in addition to amyloid-PET with [F]AZD4694 and tau-PET with [F]MK6240. Individuals were grouped according to their AD biomarker profile.

View Article and Find Full Text PDF

Neurofilament light (NfL) is a marker of neuroaxonal injury, a prominent feature of Alzheimer's disease. It remains uncertain, however, how it relates to amyloid and tau pathology or neurodegeneration across the Alzheimer's disease continuum. The aim of this study was to investigate how plasma NfL relates to amyloid and tau PET and MRI measures of brain atrophy in participants with and without cognitive impairment.

View Article and Find Full Text PDF

Objective: To determine the associations between amyloid-PET, tau-PET, and atrophy with the behavioral/dysexecutive presentation of Alzheimer disease (AD), how these differ from amnestic AD, and how they correlate to clinical symptoms.

Methods: We assessed 15 patients with behavioral/dysexecutive AD recruited from a tertiary care memory clinic, all of whom had biologically defined AD. They were compared with 25 patients with disease severity- and age-matched amnestic AD and a group of 131 cognitively unimpaired (CU) elderly individuals.

View Article and Find Full Text PDF

Amyloid-β deposition into plaques is a pathologic hallmark of Alzheimer disease appearing years before the onset of symptoms. Although cerebral amyloid-β deposition occurs on a continuum, dichotomization into positive and negative groups has advantages for diagnosis, clinical management, and population enrichment for clinical trials. F-AZD4694 (also known as F-NAV4694) is an amyloid-β imaging ligand with high affinity for amyloid-β plaques.

View Article and Find Full Text PDF

Braak stages of tau neurofibrillary tangle accumulation have been incorporated in the criteria for the neuropathological diagnosis of Alzheimer's disease. It is expected that Braak staging using brain imaging can stratify living individuals according to their individual patterns of tau deposition, which may prove crucial for clinical trials and practice. However, previous studies using the first-generation tau PET agents have shown a low sensitivity to detect tau pathology in areas corresponding to early Braak histopathological stages (∼20% of cognitively unimpaired elderly with tau deposition in regions corresponding to Braak I-II), in contrast to ∼80-90% reported in post-mortem cohorts.

View Article and Find Full Text PDF

Neurofilament light chain (NFL) measurement has been gaining strong support as a clinically useful neuronal injury biomarker for various neurodegenerative conditions. However, in Alzheimer's disease (AD), its reflection on regional neuronal injury in the context of amyloid pathology remains unclear. This study included 83 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 73 AD subjects who were further classified based on amyloid-beta (Aβ) status as positive or negative (Aβ+ vs Aβ-).

View Article and Find Full Text PDF

Background: CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.

View Article and Find Full Text PDF

APOEε4 is the most well-established genetic risk factor for sporadic Alzheimer's disease and is associated with cerebral amyloid-β. However, the association between APOEε4 and tau pathology, the other major proteinopathy of Alzheimer's disease, has been controversial. Here, we sought to determine whether the relationship between APOEε4 and tau pathology is determined by local interactions with amyloid-β.

View Article and Find Full Text PDF