Publications by authors named "Melissa S Ugelow"

Laboratory investigations of photochemical reactions in simulated Titan-like atmospheric systems provide insight into the formation of gas and aerosol products and the influence of different environmental parameters on the types of organic molecules generated. Studying the gas-phase products as a function of reaction time provides further insight into the reaction pathways that lead to organic production. The stable isotopes in the reactants and products serve as tracers and help to disentangle these reaction pathways.

View Article and Find Full Text PDF

Atmospheric organic hazes are common in planetary bodies in our solar system and likely exoplanet atmospheres as well. In addition, geochemical data support the existence of an organic haze in the early Earth's atmosphere. Much of what is known about organic haze formation derives from studies of Saturn's moon Titan.

View Article and Find Full Text PDF

We demonstrate the ability to visualize nanoparticle dissolution while simultaneously providing chemical signatures that differentiate between citrate-capped silver nanoparticles (AgNPs), AgNPs forced into dissolution via exposure to UV radiation, silver nitrate (AgNO3), and AgNO3/citrate deposited from aqueous solutions and suspensions. We utilize recently developed inkjet printing (IJP) protocols to deposit the different solutions/suspensions as NP aggregates and soluble species, which separate onto surfaces in situ, and collect mass spectral imaging data via time-of-flight secondary ion mass spectrometry (TOF-SIMS). Resulting 2D Ag(+) chemical images provide the ability to distinguish between the different Ag-containing starting materials and, when coupled with mass spectral peak ratios, provide information-rich data sets for quick and reproducible visualization of NP-based aqueous constituents.

View Article and Find Full Text PDF

Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files.

View Article and Find Full Text PDF