The seasonal occurrence of deep-water hypoxia in western Long Island Sound (LIS) has been documented for decades by water quality cruise surveys and fixed mooring buoys. While previous studies have focused on factors modulating bottom dissolved oxygen (DO) at subtidal timescales, here we analyze continuous timeseries data from a moored buoy during summers 2021 and 2022 to examine factors controlling high-frequency fluctuations in surface and bottom DO at diurnal and semidiurnal timescales. Fluctuations in surface DO at diurnal timescales are associated with biological production, while fluctuations in bottom DO near semidiurnal timescales are associated with horizontal advection of DO by tides from the upper East River tidal strait into western LIS.
View Article and Find Full Text PDFVertical density stratification often plays an important role in the formation and expansion of coastal hypoxic zones through its effect on near-bed circulation and vertical oxygen flux. However, the impact of future climate change on estuarine circulation is widely unknown. Here, we developed and calibrated a three-dimensional hydrodynamic model for Pensacola Bay, a shallow subtropical estuary in the northeastern Gulf of Mexico.
View Article and Find Full Text PDFIn shallow estuaries, fluctuations in bottom dissolved oxygen (DO) at diel (24 h) timescales are commonly attributed to cycles of net production and respiration. However, bottom DO can also be modulated by physical processes, such as tides and wind, that vary at or near diel timescales. Here, we examine processes affecting spatiotemporal variations in diel-cycling DO in Escambia Bay, a shallow estuary along the Gulf of Mexico.
View Article and Find Full Text PDF