A single nucleotide polymorphism (T to G) in the mdm2 P2 promoter, mdm2 SNP309, leads to MDM2 overexpression promoting chemotherapy resistant cancers. Two mdm2 G/G SNP309 cancer cell lines, MANCA and A875, have compromised wild-type p53 that co-localizes with MDM2 on chromatin. We hypothesized that MDM2 in these cells inhibited transcription initiation at the p53 target genes p21 and puma.
View Article and Find Full Text PDFMany types of human cancers overexpress MDM2 protein. A common characteristic among these cancers is an associated increase in mdm2 splice variants. Provided here is a comprehensive list, based on a literature review, of over 70 mdm2 variants.
View Article and Find Full Text PDFHuman cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells.
View Article and Find Full Text PDFCancer cells often have high expression of Mdm2. However, in many cancers mdm2 is alternatively spliced, with more than 40 mRNA variants identified. Many of the alternative spliced mdm2 mRNAs have the potential to encode truncated Mdm2 isoforms.
View Article and Find Full Text PDF