Patients with high-grade glioma (HGG) have an extremely poor prognosis compounded by a lack of advancement in clinical care over the past few decades. Regardless of classification, most newly diagnosed patients receive the same treatment, radiation and temozolomide (RT/TMZ). We developed a functional precision oncology test that prospectively identifies individual patient's response to this treatment regimen.
View Article and Find Full Text PDFThe development of nerve wraps for use in the repair of peripheral nerves has shown promise over recent years. A pharmacological effect to improve regeneration may be achieved by loading such materials with therapeutic agents, for example ibuprofen, a non-steroidal anti-inflammatory drug with neuroregenerative properties. In this study, four commercially available polymers (polylactic acid (PLA), polycaprolactone (PCL) and two co-polymers containing different ratios of PLA to PCL) were used to fabricate ibuprofen-loaded nerve wraps using blend electrospinning.
View Article and Find Full Text PDFIn addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2.
View Article and Find Full Text PDFJ Peripher Nerv Syst
September 2023
Background: Optimal functional recovery following peripheral nerve injuries (PNIs) is dependent upon early recognition and prompt referral to specialist centres for appropriate surgical intervention. Technologies which facilitate the early detection of PNI would allow faster referral rates and encourage improvements in patient outcomes. Serum Neurofilament light chain (NfL) measurements are cheaper to perform, easier to access and interpret than many conventional methods used for nerve injury diagnosis, such as electromyography and/or magnetic resonance imaging assessments, but changes in serum NfL levels following traumatic PNI have not been investigated.
View Article and Find Full Text PDFDamage to peripheral nerves can cause debilitating consequences for patients such as lifelong pain and disability. At present, no drug treatments are routinely given in the clinic following a peripheral nerve injury (PNI) to improve regeneration and remyelination of damaged nerves. Appropriately targeted therapeutic agents have the potential to be used at different stages following nerve damage, e.
View Article and Find Full Text PDFTo dissect the N-terminal residues within the cellular prion protein (PrP) that are critical for efficient prion propagation, we generated a library of point, double, or triple alanine replacements within residues 23-111 of PrP, stably expressed them in cells silenced for endogenous mouse PrP and challenged the reconstituted cells with four common but biologically diverse mouse prion strains. Amino acids (aa) 105-111 of Charge Cluster 2 (CC2), which is disordered in PrP, were found to be required for propagation of all four prion strains; other residues had no effect or exhibited strain-specific effects. Replacements in CC2, including aa105-111, dominantly inhibited prion propagation in the presence of endogenous wild type PrP whilst other changes were not inhibitory.
View Article and Find Full Text PDFThe slow rate of neuronal regeneration that follows peripheral nerve repair results in poor recovery, particularly where reinnervation of muscles is delayed, leading to atrophy and permanent loss of function. There is a clear clinical need to develop drug treatments that can accelerate nerve regeneration safely, restoring connections before the target tissues deteriorate irreversibly. The identification that the Rho/Rho-associated kinase (ROCK) pathway acts to limit neuronal growth rate is a promising advancement towards the development of drugs.
View Article and Find Full Text PDFA surgical autograft remains the clinical gold-standard therapy for gap repair following peripheral nerve injury, however, challenges remain with achieving full recovery and reducing donor-site morbidity. Engineered Neural Tissue (EngNT) manufactured using differentiated CTX0E03 human stem cells (EngNT-CTX) has been developed as a potential 'off the shelf' allogeneic autograft replacement. Ensheathed within a collagen membrane developed to facilitate biomechanical integration, EngNT-CTX was used to bridge a critical-length (15 mm) sciatic nerve gap injury in athymic nude rats.
View Article and Find Full Text PDFBackground: Clinical outcomes in high-grade glioma (HGG) have remained relatively unchanged over the last 3 decades with only modest increases in overall survival. Despite the validation of biomarkers to classify treatment response, most newly diagnosed (ND) patients receive the same treatment regimen. This study aimed to determine whether a prospective functional assay that provides a direct, live tumor cell-based drug response prediction specific for each patient could accurately predict clinical drug response prior to treatment.
View Article and Find Full Text PDFAlthough 70-80% of newly diagnosed ovarian cancer patients respond to first-line therapy, almost all relapse and five-year survival remains below 50%. One strategy to increase five-year survival is prolonging time to relapse by improving first-line therapy response. However, no biomarker today can accurately predict individual response to therapy.
View Article and Find Full Text PDFAnat Rec (Hoboken)
October 2018
Peripheral nerve injuries (PNI) have a high prevalence and can be debilitating, resulting in life-long loss or disturbance in end-organ function, which compromises quality of life for patients. Current therapies use microsurgical approaches but there is the potential for enhancing recovery through other therapeutic modalities such as; cell-based conduits, gene therapy and small molecules. A number of molecular targets and drugs which have the potential to improve nerve regeneration have been identified, however, there are challenges associated with moving therapies toward clinical translation.
View Article and Find Full Text PDF