Publications by authors named "Melissa Prah"

Article Synopsis
  • A national consensus has been established for DSC MRI perfusion data collection to improve comparisons of relative cerebral blood volume (rCBV) maps across different sites and enhance the understanding of brain tumors.
  • This study involved patients with untreated brain metastases, using a standardized MRI technique to generate and analyze rCBV maps, facilitating comparisons with glioblastoma and normal brain tissue.
  • Results showed that the average sRCBV for brain metastases was significantly lower than that of glioblastoma but higher than that of normal appearing white matter, indicating distinct differences in blood volume among these conditions.
View Article and Find Full Text PDF

Background And Objectives: Gross-total resection (GTR) and low residual tumor volume (RTV) have been associated with increased survival in glioblastoma. Largely due to the subjectivity involved, the determination of GTR and RTV remains difficult in the postoperative setting. In response, the objective of this study is to evaluate the clinical efficacy of an easy-to-use MRI metric, called delta T1 (dT1), to quantify extent of resection (EOR) and RTV, in comparison to radiologist impression, to predict overall survival (OS) in glioblastoma patients.

View Article and Find Full Text PDF

Background And Purpose: DSC-MR imaging can be used to generate fractional tumor burden (FTB) maps via application of relative CBV thresholds to spatially differentiate glioblastoma recurrence from posttreatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MR imaging protocol by using preload, a moderate flip angle (MFA, 60°), and postprocessing leakage correction. Recently, a DSC-MR imaging protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected relative CBV (rCBV) equivalent to the reference protocol.

View Article and Find Full Text PDF

Relative cerebral blood volume (rCBV) derived from dynamic susceptibility contrast (DSC) perfusion MR imaging (pMRI) has been shown to be a robust marker of neuroradiological tumor burden. Recent consensus recommendations in pMRI acquisition strategies have provided a pathway for pMRI inclusion in diverse patient care centers, regardless of size or experience. However, even with proper implementation and execution of the DSC-MRI protocol, issues will arise that many centers may not easily recognize or be aware of.

View Article and Find Full Text PDF

Background: Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways.

View Article and Find Full Text PDF

Background: Pulsed low-dose-rate radiotherapy (pLDR) is a commonly used reirradiation technique for recurrent glioma, but its upfront use with temozolomide (TMZ) following primary resection of glioblastoma is currently under investigation. Because standard magnetic resonance imaging (MRI) has limitations in differentiating treatment effect from tumor progression in such applications, perfusion-weighted MRI (PWI) can be used to create fractional tumor burden (FTB) maps to spatially distinguish active tumor from treatment-related effect.

Methods: We performed PWI prior to re-resection in four patients with glioblastoma who had undergone upfront pLDR concurrent with TMZ who had radiographic suspicion for tumor progression at a median of 3 months (0-5 months or 0-143 days) post-pLDR.

View Article and Find Full Text PDF

Background And Purpose: Gliomas have been found to alter iron metabolism and transport in ways that result in an expansion of their intracellular iron compartments to support aggressive tumor growth. This study used deep neural network trained quantitative susceptibility mapping to assess basal ganglia iron concentrations in glioma patients.

Materials And Methods: Ninety-two patients with brain lesions were initially enrolled in this study and fifty-nine met the inclusion criteria.

View Article and Find Full Text PDF

Background: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease.

Purpose: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms.

Study Type: Prospective.

View Article and Find Full Text PDF

Background And Importance: Distinction of brain tumor progression from treatment effect on postcontrast magnetic resonance imaging (MRI) is an ongoing challenge in the management of brain tumor patients. A newly emerging MRI biomarker called fractional tumor burden (FTB) has demonstrated the ability to spatially distinguish high-grade brain tumor from treatment effect with important implications for surgical management and pathological diagnosis.

Clinical Presentation: A 58-yr-old male with glioblastoma was treated with standard concurrent chemoradiotherapy (CRT) after initial resection.

View Article and Find Full Text PDF

Background: In Radiation Therapy Oncology Group (RTOG) 0825, a phase III trial of standard therapy with bevacizumab or without (placebo) in newly diagnosed glioblastoma, 44 patients underwent dynamic contrast enhanced (DCE) and/or dynamic susceptibility contrast (DSC) MRI in the American College of Radiology Imaging Network (ACRIN) trial 6686. The association between early changes in relative cerebral blood volume (rCBV) and volume transfer constant (Ktrans) with overall survival (OS) was evaluated.

Methods: MRI was performed at postop baseline (S0), immediately before (S1), 1 day after (S2), and 7 weeks after (S3) bevacizumab or placebo initiation.

View Article and Find Full Text PDF

Purpose: Dismal prognosis and limited treatment options for recurrent high-grade glioma have provoked interest in various forms of reirradiation. Pulsed reduced dose rate radiation therapy (pRDR) is a promising technique that exploits low-dose hyper-radiosensitivity of proliferating tumor cells while sparing adjacent nonproliferating normal brain tissue. Large radiation treatment volumes can thus be used to target both contrast-enhancing and FLAIR abnormalities thought to harbor recurrent gross and microscopic disease, respectively.

View Article and Find Full Text PDF

We have previously characterized the reproducibility of brain tumor relative cerebral blood volume (rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibility was highest when imaging protocols and software were consistent, but decreased when they were variable. Our goal in this study was to determine the impact of rCBV reproducibility for tumor grade and treatment response classification.

View Article and Find Full Text PDF

Relative cerebral blood volume (rCBV) cannot be used as a response metric in clinical trials, in part, because of variations in biomarker consistency and associated interpretation across sites, stemming from differences in image acquisition and postprocessing methods (PMs). This study leveraged a dynamic susceptibility contrast magnetic resonance imaging digital reference object to characterize rCBV consistency across 12 sites participating in the Quantitative Imaging Network (QIN), specifically focusing on differences in site-specific imaging protocols (IPs; n = 17), and PMs (n = 19) and differences due to site-specific IPs and PMs (n = 25). Thus, high agreement across sites occurs when 1 managing center processes rCBV despite slight variations in the IP.

View Article and Find Full Text PDF

A multi-center imaging trial by the American College of Radiology Imaging Network (ACRIN) "A Multicenter, phase II assessment of tumor hypoxia in glioblastoma using 18F Fluoromisonidazole (FMISO) with PET and MRI (ACRIN 6684)", was conducted to assess hypoxia in patients with glioblastoma (GBM). The aims of this study were to support the role of proton magnetic resonance spectroscopic imaging (1H MRSI) as a prognostic marker for brain tumor patients in multi-center clinical trials. Seventeen participants from four sites had analyzable 3D MRSI datasets acquired on Philips, GE or Siemens scanners at either 1.

View Article and Find Full Text PDF

This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards.

View Article and Find Full Text PDF

Diffusion weighted MRI has become ubiquitous in many areas of medicine, including cancer diagnosis and treatment response monitoring. Reproducibility of diffusion metrics is essential for their acceptance as quantitative biomarkers in these areas. We examined the variability in the apparent diffusion coefficient (ADC) obtained from both postprocessing software implementations utilized by the NCI Quantitative Imaging Network and online scan time-generated ADC maps.

View Article and Find Full Text PDF

The goal of this study is to spatially discriminate tumor from treatment effect (TE), within the contrast-enhancing lesion, for brain tumor patients at all stages of treatment. To this end, the diagnostic accuracy of MRI-derived diffusion and perfusion parameters to distinguish pure TE from pure glioblastoma (GBM) was determined utilizing spatially-correlated biopsy samples. From July 2010 through June 2015, brain tumor patients who underwent pre-operative DWI and DSC-MRI and stereotactic image-guided biopsy were considered for inclusion in this IRB-approved study.

View Article and Find Full Text PDF

Purpose: Structural and functional alterations in tumor vasculature are thought to contribute to tumor hypoxia which is a primary driver of malignancy through its negative impact on the efficacy of radiation, immune surveillance, apoptosis, genomic stability, and accelerated angiogenesis. We performed a prospective, multicenter study to test the hypothesis that abnormal tumor vasculature and hypoxia, as measured with MRI and PET, will negatively impact survival in patients with newly diagnosed glioblastoma.

Experimental Design: Prior to the start of chemoradiation, patients with glioblastoma underwent MRI scans that included dynamic contrast enhanced and dynamic susceptibility contrast perfusion sequences to quantitate tumor cerebral blood volume/flow (CBV/CBF) and vascular permeability (k) as well as F-Fluoromisonidazole (F-FMISO) PET to quantitate tumor hypoxia.

View Article and Find Full Text PDF

Background: The study goal was to determine whether changes in relative cerebral blood volume (rCBV) derived from dynamic susceptibility contrast (DSC) MRI are predictive of overall survival (OS) in patients with recurrent glioblastoma multiforme (GBM) when measured 2, 8, and 16 weeks after treatment initiation.

Methods: Patients with recurrent GBM (37/123) enrolled in ACRIN 6677/RTOG 0625, a multicenter, randomized, phase II trial of bevacizumab with irinotecan or temozolomide, consented to DSC-MRI plus conventional MRI, 21 with DSC-MRI at baseline and at least 1 postbaseline scan. Contrast-enhancing regions of interest were determined semi-automatically using pre- and postcontrast T1-weighted images.

View Article and Find Full Text PDF

Background: The anti-VEGF antibody, bevacizumab, is standard treatment for patients with recurrent glioblastoma. In this setting, traditional anatomic MRI methods such as post-contrast T1-weighted and T2-weighted imaging are proving unreliable for monitoring response. Here we evaluate the prognostic significance of pre- and posttreatment relative cerebral blood volume (rCBV) derived from dynamic susceptibility contrast MRI to predict response to bevacizumab.

View Article and Find Full Text PDF

Purpose: To characterize the influence of perfusion on the measurement of diffusion changes over time when ADC is computed using standard two-point methods.

Materials And Methods: Functional diffusion maps (FDMs), which depict changes in diffusion over time, were compared with rCBV changes in patients with brain tumors. The FDMs were created by coregistering and subtracting ADC maps from two time points and categorizing voxels where ADC significantly increased (iADC), decreased (dADC), or did not change (ncADC).

View Article and Find Full Text PDF

Background: Standard pre- and postcontrast (T1 + C) anatomical MR imaging is proving to be insufficient for accurately monitoring bevacizumab treatment response in recurrent glioblastoma (GBM). We present a novel imaging biomarker that detects abnormal tumor vasculature exhibiting both arterial and venous perfusion characteristics. We hypothesized that a decrease in the extent of this abnormal vasculature after bevacizumab treatment would predict treatment efficacy and overall survival.

View Article and Find Full Text PDF

Hydrogen sulfide is an environmental toxicant and gaseous neurotransmitter. It is produced enterically by sulfur-reducing bacteria and invasive pathogens including Streptococcus anginosus group, Salmonella and Citrobacter. We describe putative focal hydrogen sulfide neurotoxicity after Streptococcus constellatus meningitis, treated with adjunctive sodium nitrite and hyperbaric oxygen therapy.

View Article and Find Full Text PDF