Transport of bile acids within the enterohepatic circulation from the liver to the intestines via the gallbladder and back to the liver via the portal vein plays a critical role in bile acid regulation and homeostasis. Deficiency of fibroblast growth factor 19 (FGF19), a hormone whose role is to suppress de novo hepatic bile acid synthesis to maintain homeostatic levels, results in bile acid diarrhea (BAD). FGF19 also modulates gallbladder motility so that bile acids are concentrated in the gallbladder until postprandial contraction.
View Article and Find Full Text PDFMetformin has been shown to repress transcription of the bile salt export pump (BSEP) in human primary hepatocytes. The primary objective of this study was to assess the effect of oral metformin on the human pharmacokinetics (PKs) of two BSEP probe substrates: pravastatin and chenodeoxycholic acid (CDCA; also known as chenodiol). Endogenous bile acid levels were assessed as a secondary measure of metformin impact.
View Article and Find Full Text PDFPurpose: Despite no broad, direct evidence in humans, there is a potential concern that surfactants alter active or passive drug intestinal permeation to modulate oral drug absorption. The purpose of this study was to investigate the impact of the surfactant polysorbate 80 on active and passive intestinal drug absorption in humans.
Methods: The human (n = 12) pharmacokinetics (PK) of three probe substrates of intestinal absorption, valacyclovir, chenodeoxycholic acid (CDCA), and enalaprilat, were assessed.
The objective of this review article is to summarize literature data pertinent to potential excipient effects on intestinal drug permeability and transit. Despite the use of excipients in drug products for decades, considerable research efforts have been directed towards evaluating their potential effects on drug bioavailability. Potential excipient concerns stem from drug formulation changes (e.
View Article and Find Full Text PDFData are examined regarding possible waiver of in vivo bioequivalence testing (i.e. biowaiver) for approval of metformin hydrochloride (metformin) immediate-release solid oral dosage forms.
View Article and Find Full Text PDFIn up to 50% of people diagnosed with a common ailment, diarrhea-predominant irritable bowel syndrome, diarrhea results from excess spillage of bile acids into the colon-data emerging over the past decade identified deficient release of a gut hormone, fibroblast growth factor 19 (FGF19), and a consequent lack of feedback suppression of bile acid synthesis as the most common cause. Selenium homotaurocholic acid (SeHCAT) testing, considered the most sensitive and specific means of identifying individuals with bile acid diarrhea, is unavailable in many countries, including the United States. Other than SeHCAT, tests to diagnose bile acid diarrhea are cumbersome, non-specific, or insufficiently validated; clinicians commonly rely on a therapeutic trial of bile acid binders.
View Article and Find Full Text PDFOur work has focused on defining the utility of fluorine (F)-labeled bile acid analogues and magnetic resonance imaging (MRI) to identify altered bile acid transport in vivo. In the current study, we explored the ability of this approach to differentiate fibroblast growth factor-15 (FGF15)-deficient from wild-type (WT) mice, a potential diagnostic test for bile acid diarrhea, a commonly misdiagnosed disorder. FGF15 is the murine homologue of human FGF19, an intestinal hormone whose deficiency is an underappreciated cause of bile acid diarrhea.
View Article and Find Full Text PDFFibroblast growth factor-19 (human FGF19; murine FGF15) suppresses bile acid synthesis. In FGF19 deficiency, diarrhea resulting from bile acid spillage into the colon mimics irritable bowel syndrome. To seek other consequences of FGF19/15 deficiency, we used and wild-type (WT) mice to assess gallbladder filling, the bile acid pool, fecal bile acid levels, and colon neoplasia.
View Article and Find Full Text PDFAlong with their traditional role as detergents that facilitate fat absorption, emerging literature indicates that bile acids are potent signaling molecules that affect multiple organs; they modulate gut motility and hormone production, and alter vascular tone, glucose metabolism, lipid metabolism, and energy utilization. Changes in fecal bile acids may alter the gut microbiome and promote colon pathology including cholerrheic diarrhea and colon cancer. Key regulators of fecal bile acid composition are the small intestinal Apical Sodium-dependent Bile Acid Transporter (ASBT) and fibroblast growth factor-19 (FGF19).
View Article and Find Full Text PDF