Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements.
View Article and Find Full Text PDFInfection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation.
View Article and Find Full Text PDFIn this review, we apply selected imputation strategies to label-free liquid chromatography-mass spectrometry (LC-MS) proteomics datasets to evaluate the accuracy with respect to metrics of variance and classification. We evaluate several commonly used imputation approaches for individual merits and discuss the caveats of each approach with respect to the example LC-MS proteomics data. In general, local similarity-based approaches, such as the regularized expectation maximization and least-squares adaptive algorithms, yield the best overall performances with respect to metrics of accuracy and robustness.
View Article and Find Full Text PDFThe goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue.
View Article and Find Full Text PDFAs the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that, with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome.
View Article and Find Full Text PDFAs the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome.
View Article and Find Full Text PDFUnlabelled: The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection.
View Article and Find Full Text PDFIt is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome--the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose.
View Article and Find Full Text PDFRapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is a crucial direction for the field of medicine. While MS-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new instrumental platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry separations with liquid chromatography and MS to dramatically increase measurement sensitivity and throughput, further enabling future high throughput MS-based clinical applications.
View Article and Find Full Text PDFAirway inflammation has a pathophysiological role in asthma. Eosinophils, which are commonly increased in asthmatic airways, express eosinophil peroxidase and thereby produce hypobromite and bromotyrosine. Bromotyrosine is believed to be a specific marker for eosinophil activity, but developing an antibody against monobromotyrosine, the predominant brominated tyrosine residue found in vivo has proven difficult.
View Article and Find Full Text PDFBackground: The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process.
Objective: To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme.
Unlabelled: Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes.
View Article and Find Full Text PDFToxicol Appl Pharmacol
September 2013
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function.
View Article and Find Full Text PDFPrincipal Component Analysis (PCA) is a common exploratory tool used to evaluate large complex data sets. The resulting lower-dimensional representations are often valuable for pattern visualization, clustering, or classification of the data. However, PCA cannot be applied directly to many -omics data sets generated by newer technologies such as label-free mass spectrometry due to large numbers of non-random missing values.
View Article and Find Full Text PDFThe objective of this research was to investigate the relationship between lung cancer mortality rates, carcinogenic polycyclic aromatic hydrocarbon (PAH) emissions, and smoking on a global scale, as well as for different socioeconomic country groups. The estimated lung cancer deaths per 100,000 people (ED100000) and age standardized lung cancer death rate per 100,000 people (ASDR100000) in 2004 were regressed on PAH emissions in benzo[a]pyrene equivalence (BaPeq), smoking prevalence, cigarette price, gross domestic product per capita, percentage of people with diabetes, and average body mass index using simple and multiple linear regression for 136 countries. Using stepwise multiple linear regression, a statistically significant positive linear relationship was found between loge(ED100000) and loge(BaPeq) emissions for high (p-value <0.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein.
View Article and Find Full Text PDFLiquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies.
View Article and Find Full Text PDFThe use of passive sampling devices (PSDs) for monitoring hydrophobic organic contaminants in aquatic environments can entail logistical constraints that often limit a comprehensive statistical sampling plan, thus resulting in a restricted number of samples. The present study demonstrates an approach for using the results of a pilot study designed to estimate sampling variability, which in turn can be used as variance estimates for confidence intervals for future n = 1 PSD samples of the same aquatic system. Sets of three to five PSDs were deployed in the Portland Harbor Superfund site for three sampling periods over the course of two years.
View Article and Find Full Text PDFAlthough it is known that polycyclic aromatic hydrocarbons (PAHs) can be found in smoked meats, little is known about their prevalence in Native American smoked fish. In this work, the effect of traditional Native American fish smoking methods on dietary exposure to PAHs and possible risks to human health has been assessed. Smoking methods considered smoking structure (tipi or shed) and wood type (apple or alder).
View Article and Find Full Text PDFDibenzo[def,p]chrysene (DBC) is a transplacental carcinogen in mice (15mg/kg; gestation day (GD) 17). To mimic residual exposure throughout pregnancy, dams received four smaller doses of DBC (3.75mg/kg) on GD 5, 9, 13 and 17.
View Article and Find Full Text PDFQuantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC-MS proteomics dataset is a fundamental step in pre-processing. However, the downstream analysis of LC-MS proteomics data can be dramatically affected by the normalization method selected.
View Article and Find Full Text PDFWe previously employed systems biology approaches to identify the mitochondrial fatty acid oxidation enzyme dodecenoyl coenzyme A delta isomerase (DCI) as a bottleneck protein controlling host metabolic reprogramming during hepatitis C virus (HCV) infection. Here we present the results of studies confirming the importance of DCI to HCV pathogenesis. Computational models incorporating proteomic data from HCV patient liver biopsy specimens recapitulated our original predictions regarding DCI and link HCV-associated alterations in cellular metabolism and liver disease progression.
View Article and Find Full Text PDFMotivation: In the analysis of differential peptide peak intensities (i.e. abundance measures), LC-MS analyses with poor quality peptide abundance data can bias downstream statistical analyses and hence the biological interpretation for an otherwise high-quality dataset.
View Article and Find Full Text PDF