Background: Functional electrical stimulation (FES) is a rehabilitation technique that enables functional improvements in patients with motor control impairments. This study presents an original design and prototyping method for a smart sleeve for FES applications. The article explains how to integrate a carbon-based dry electrode into a textile structure and ensure an electrical connection between the electrodes and the stimulator for effective delivery of the FES.
View Article and Find Full Text PDFBackground: Functional electrical stimulation (FES) can be used in rehabilitation to aid or improve function in people with paralysis. In clinical settings, it is common practice to use transcutaneous electrodes to apply the electrical stimulation, since they are non-invasive, and can be easily applied and repositioned as necessary. However, the current electrode options available for transcutaneous FES are limited and can have practical disadvantages, such as the need for a wet interface with the skin for better comfort and performance.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
October 2023
Functional electrical stimulation (FES) has been a useful therapeutic tool in rehabilitation, particularly for people with paralysis. To deliver stimulation in its most basic setup, a stimulator and at least a pair of electrodes are needed. The electrodes are an essential part of the system since they allow the transduction of the stimulator signals into the body.
View Article and Find Full Text PDFObjective: The study objective was to assess the feasibility of stimulating the lower trapezius (LT), the upper trapezius (UT) and serratus anterior (SA) muscles along with anterior or middle deltoid, using surface functional electrical stimulation (FES). The secondary aim was to understand the effects of LT, UT, and SA stimulation on maximum arm reach achieved in shoulder flexion and abduction.
Design: Single arm interventional study.
Neural stem and progenitor cells (i.e., neural precursors) are found within specific regions in the central nervous system and have great regenerative capacity.
View Article and Find Full Text PDFThis study presents a novel type of wet electrode material for electrophysiological monitoring based on a conductive aerogel film. The electrode material incorporates cellulose nanocrystal and fiber as a biocompatible polymer and multi-walled carbon nanotube as a conductive filler. The fabricated electrode is fully characterized to explore the chemical, mechanical, electrical, and water absorption properties.
View Article and Find Full Text PDFElectrical stimulation of the brain through the implantation of electrodes is an effective treatment for certain diseases and the focus of a large body of research investigating new cell mechanisms, neurological phenomena, and treatments. Electrode devices developed for stimulation in rodents vary widely in size, cost, and functionality, with the majority of recent studies presenting complex, multi-functional designs. While some experiments require these added features, others are in greater need of reliable, low cost, and readily available devices that will allow surgeries to be scheduled and completed without delay.
View Article and Find Full Text PDF