The use of aerosolized bacteriophages as surrogates for hazardous viruses might simplify and accelerate the discovery of links between viral components and their persistence in the airborne state under diverse environmental conditions. In this study, four structurally distinct lytic phages, MS2 (single-stranded RNA [ssRNA]), ϕ6 (double-stranded RNA [dsRNA]), ϕX174 (single-stranded DNA [ssDNA]), and PR772 (double-stranded DNA [dsDNA]), were nebulized into a rotating chamber and exposed to various levels of relative humidity (RH) and temperature as well as to germicidal UV radiation. The aerosolized viral particles were allowed to remain airborne for up to 14 h before being sampled for analysis by plaque assays and quantitative PCRs.
View Article and Find Full Text PDFA chamber was designed and built to study the long-term effects of environmental conditions on air-borne microorganisms. The system consists of a 55.5-L cylindrical chamber, which can rotate at variable speeds on its axis.
View Article and Find Full Text PDFAlthough bioaerosols from both cage-housed (CH) and floor-housed (FH) poultry operations are highly concentrated, the concentrations of dust, endotoxin, and bacteria are significantly higher in FH bioaerosols. Workers from CH operations have reported a greater prevalence of respiratory symptoms. To date, archaea have been examined in swine and dairy bioaerosols but not in poultry bioaerosols.
View Article and Find Full Text PDF