CDK2AP1 (cyclin-dependent kinase 2-associated protein 1), corresponding to the gene doc-1 (deleted in oral cancer 1), is a tumor suppressor protein. The doc-1 gene is absent or down-regulated in hamster oral cancer cells and in many other cancer cell types. The ubiquitously expressed CDK2AP1 protein is the only known specific inhibitor of CDK2, making it an important component of cell cycle regulation during G(1)-to-S phase transition.
View Article and Find Full Text PDFIn this chapter, we concentrate on the production of high-quality protein samples for nuclear magnetic resonance (NMR) studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium and outline our high-throughput strategies for producing high-quality protein samples for NMR studies.
View Article and Find Full Text PDFWe describe the core Protein Production Platform of the Northeast Structural Genomics Consortium (NESG) and outline the strategies used for producing high-quality protein samples. The platform is centered on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems. The 6X-His tag allows for similar purification procedures for most targets and implementation of high-throughput (HTP) parallel methods.
View Article and Find Full Text PDFProtein perdeuteration approaches have tremendous value in protein NMR studies, but are limited by the high cost of perdeuterated media. Here, we demonstrate that E. coli cultures expressing proteins using either the condensed single protein production method (cSPP), or conventional pET expression plasmids, can be condensed prior to protein expression, thereby providing high-quality (2)H, (13)C, (15)N-enriched protein samples at 2.
View Article and Find Full Text PDFAlkyltransferase-like proteins (ATLs) are a novel class of DNA repair proteins related to O(6)-alkylguanine-DNA alkyltransferases (AGTs) that tightly bind alkylated DNA and shunt the damaged DNA into the nucleotide excision repair pathway. Here, we present the first structure of a bacterial ATL, from Vibrio parahaemolyticus (vpAtl). We demonstrate that vpAtl adopts an AGT-like fold and that the protein is capable of tightly binding to O(6)-methylguanine-containing DNA and disrupting its repair by human AGT, a hallmark of ATLs.
View Article and Find Full Text PDFEscherichia coli Spr is a membrane-anchored cell wall hydrolase. The solution NMR structure of the C-terminal NlpC/P60 domain of E. coli Spr described here reveals that the protein adopts a papain-like alpha+beta fold and identifies a substrate-binding cleft featuring several highly conserved residues.
View Article and Find Full Text PDF