Raman spectroscopy assesses the chemical composition of a sample by exploiting the inherent and unique vibrational characteristics of chemical bonds. Initial applications of Raman were identified in the industrial and chemical sectors, providing a rapid non-invasive method to identify sample components or perform quality control assessments. Applications have since increased and sample sizes decreased, leading to the onset of micro-Raman spectroscopy.
View Article and Find Full Text PDFOriginally identified in cultured cells, oncogenic cellular senescence is a growth-arrest mechanism which may inhibit tumor development by limiting the ability of cells to divide. However, literature shows that these cells secrete tumor-inducing and tumor-suppressing proteins leading to poor prognosis. Understanding the progression of oncogenic cellular senescence and associated mechanisms provides important implications for improving tumorigenesis therapeutic treatments.
View Article and Find Full Text PDFRaman spectroscopy provides chemical-rich information about the composition of analytes and is a powerful tool for biological studies. With the ability to investigate specific cellular components or image whole cells, compatible methods of sample preservation must be implemented for accurate spectra to be collected. Unfortunately, the effects of many commonly used sample preservation methods have not been explored with cultured cells.
View Article and Find Full Text PDF