Microsatellite instability (MSI) is a molecular signature of mismatch repair deficiency (dMMR), a predictive marker of immune checkpoint inhibitor therapy response. Despite its recognized pan-cancer value, most methods only support detection of this signature in colorectal cancer. In addition to the tissue-specific differences that impact the sensitivity of MSI detection in other tissues, the performance of most methods is also affected by patient ethnicity, tumor content, and other sample-specific properties.
View Article and Find Full Text PDFCurr Issues Mol Biol
February 2017
Lentil (Lens culinaris) is one of the cool season grain legume crops and an important source of dietary proteins and fibre. Fungal diseases are main constraints to lentil production and account for significant yield and quality losses. Lentil has a narrow genetic base presumably due to a bottleneck during domestication and as a result, any resistance to fungal diseases in the cultivated genepool is gradually eroded and overcome by pathogens.
View Article and Find Full Text PDFLentil (Lens culinaris ssp. culinaris) is a nutritious and affordable pulse with an ancient crop domestication history. The genus Lens consists of seven taxa, however, there are many discrepancies in the taxon and gene pool classification of lentil and its wild relatives.
View Article and Find Full Text PDFA change in the timing or rate of developmental events throughout ontogeny is referred to as heterochrony, and it is a major evolutionary process in plants and animals. We investigated the genetic basis for natural variation in the timing of vegetative phase change in the tree Eucalyptus globulus, which undergoes a dramatic change in vegetative morphology during the juvenile-to-adult transition. Quantitative trait loci analysis in an outcross F2 family derived from crosses between individuals from a coastal population of E.
View Article and Find Full Text PDFBackground: Next Generation Sequencing has provided comprehensive, affordable and high-throughput DNA sequences for Single Nucleotide Polymorphism (SNP) discovery in Acacia auriculiformis and Acacia mangium. Like other non-model species, SNP detection and genotyping in Acacia are challenging due to lack of genome sequences. The main objective of this study is to develop the first high-throughput SNP genotyping assay for linkage map construction of A.
View Article and Find Full Text PDFBackground: Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids.
View Article and Find Full Text PDF