Publications by authors named "Melissa M Harrison"

Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors.

View Article and Find Full Text PDF

Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type-specific binding and activity.

View Article and Find Full Text PDF

The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT).

View Article and Find Full Text PDF

The eukaryotic genome is organized to enable the precise regulation of gene expression. This organization is established as the embryo transitions from a fertilized gamete to a totipotent zygote. To understand the factors and processes that drive genomic organization, we focused on the pioneer factor GAGA factor (GAF) that is required for early development in Drosophila.

View Article and Find Full Text PDF
Article Synopsis
  • Stem cells transition from a "stemness" state to differentiated states through coordinated gene regulation mechanisms, but understanding how these processes are intricately balanced is complex due to overlapping translational controls.
  • The study focuses on fruit flies' neural stem cells, demonstrating that the transcription factor Fru is critical for controlling the expression of stemness genes, particularly by regulating a repressive histone mark (H3K27me3) in key gene regions.
  • The findings suggest that maintaining low levels of H3K27me3 is essential for fine-tuning gene expression in stem cells, a mechanism that may be similar in various organisms, including humans.
View Article and Find Full Text PDF

Chromatin organization within the three-dimensional (3D) nuclear space is important for proper gene expression and developmental programming. This organization is established during the dramatic reprogramming that occurs in early embryonic development. Thus, the early embryo is an ideal model for examining the formation and dynamics of 3D chromatin structure.

View Article and Find Full Text PDF

Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type specific binding and activity.

View Article and Find Full Text PDF

To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood.

View Article and Find Full Text PDF

During Drosophila embryogenesis, the essential pioneer factor Zelda defines hundreds of cis-regulatory regions and in doing so reprograms the zygotic transcriptome. While Zelda is essential later in development, it is unclear how the ability of Zelda to define cis-regulatory regions is shaped by cell-type-specific chromatin architecture. Asymmetric division of neural stem cells (neuroblasts) in the fly brain provide an excellent paradigm for investigating the cell-type-specific functions of this pioneer factor.

View Article and Find Full Text PDF

Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are essential for remodeling the chromatin and driving the initial wave of zygotic gene expression. In , the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal-to-zygotic transition (MZT).

View Article and Find Full Text PDF

Coordinated changes in gene expression allow a single fertilized oocyte to develop into a complex multi-cellular organism. These changes in expression are controlled by transcription factors that gain access to discrete cis-regulatory elements in the genome, allowing them to activate gene expression. Although nucleosomes present barriers to transcription factor occupancy, pioneer transcription factors have unique properties that allow them to bind DNA in the context of nucleosomes, define cis-regulatory elements, and facilitate the subsequent binding of additional factors that determine gene expression.

View Article and Find Full Text PDF

Diffuse midline gliomas and posterior fossa type A ependymomas contain the recurrent histone H3 lysine 27 (H3 K27M) mutation and express the H3 K27M-mimic EZHIP (CXorf67), respectively. H3 K27M and EZHIP are competitive inhibitors of Polycomb Repressive Complex 2 (PRC2) lysine methyltransferase activity. In vivo, these proteins reduce overall H3 lysine 27 trimethylation (H3K27me3) levels; however, residual peaks of H3K27me3 remain at CpG islands (CGIs) through an unknown mechanism.

View Article and Find Full Text PDF

The dramatic changes in gene expression required for development necessitate the establishment of regulatory modules defined by regions of accessible chromatin. Pioneer transcription factors have the unique property of binding closed chromatin and facilitating the establishment of these accessible regions. Nonetheless, much of how pioneer transcription factors coordinate changes in chromatin accessibility during development remains unknown.

View Article and Find Full Text PDF

Meier-Gorlin syndrome is a rare recessive disorder characterized by a number of distinct tissue-specific developmental defects. Genes encoding members of the origin recognition complex (ORC) and additional proteins essential for DNA replication (CDC6, CDT1, GMNN, CDC45, MCM5, and DONSON) are mutated in individuals diagnosed with MGS. The essential role of ORC is to license origins during the G1 phase of the cell cycle, but ORC has also been implicated in several nonreplicative functions.

View Article and Find Full Text PDF

Fate-changing transcription factors (TFs) scan chromatin to initiate new genetic programs during cell differentiation and reprogramming. Yet the protein structure domains that allow TFs to target nucleosomal DNA remain unexplored. We screened diverse TFs for binding to nucleosomes containing motif-enriched sequences targeted by pioneer factors in vivo.

View Article and Find Full Text PDF

The early embryo of exists as a rapidly dividing syncytium of nuclei that are transcriptionally silent. Maternally deposited factors are required to awaken the genome and assist in the transition from maternal to zygotic control of development. Because many of these essential factors are maternally deposited and the early nuclear divisions are so rapid, it has been difficult to assess the functional role of transcription factors at discrete points in early embryonic development.

View Article and Find Full Text PDF

The onset of metazoan development requires that two terminally differentiated germ cells, a sperm and an oocyte, become reprogrammed to the totipotent embryo, which can subsequently give rise to all the cell types of the adult organism. In nearly all animals, maternal gene products regulate the initial events of embryogenesis while the zygotic genome remains transcriptionally silent. Developmental control is then passed from mother to zygote through a process known as the maternal-to-zygotic transition (MZT).

View Article and Find Full Text PDF

In mammals, the grainyhead-like transcription factor (GRHL) family is composed of three nuclear proteins that are responsible for driving epithelial cell fate: GRHL1, GRHL2, and GRHL3. GRHL2 is important in maintaining proper tubulogenesis during development and in suppressing the epithelial-to-mesenchymal transition. Within the last decade, evidence indicates both tumor-suppressive and oncogenic roles for GRHL2 in various types of cancers.

View Article and Find Full Text PDF

Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda.

View Article and Find Full Text PDF

The original version of this Article contained an error in Fig. 4a, in which the "=" sign of the equation was inadvertently replaced with a "-" sign. This has been corrected in the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Unlabelled: The regulation of transcription requires the coordination of numerous activities on DNA, yet how transcription factors mediate these activities remains poorly understood. Here, we use lattice light-sheet microscopy to integrate single-molecule and high-speed 4D imaging in developing embryos to study the nuclear organization and interactions of the key transcription factors Zelda and Bicoid. In contrast to previous studies suggesting stable, cooperative binding, we show that both factors interact with DNA with surprisingly high off-rates.

View Article and Find Full Text PDF

Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development.

View Article and Find Full Text PDF

Pioneer transcription factors can engage nucleosomal DNA, which leads to local chromatin remodeling and to the establishment of transcriptional competence. However, the impact of enhancer priming by pioneer factors on the temporal control of gene expression and on mitotic memory remains unclear. Here we employ quantitative live imaging methods and mathematical modeling to test the effect of the pioneer factor Zelda on transcriptional dynamics and memory in Drosophila embryos.

View Article and Find Full Text PDF

has long been a premier model for the development and application of cutting-edge genetic approaches. The CRISPR-Cas system now adds the ability to manipulate the genome with ease and precision, providing a rich toolbox to interrogate relationships between genotype and phenotype, to delineate and visualize how the genome is organized, to illuminate and manipulate RNA, and to pioneer new gene drive technologies. Myriad transformative approaches have already originated from the CRISPR-Cas system, which will likely continue to spark the creation of tools with diverse applications.

View Article and Find Full Text PDF