The hardest anatomical components of many animals are connected at thin seams known as sutures, which allow for growth and compliance required for respiration and movement and serve as a defense mechanism by absorbing energy during impacts. We take a bio-inspired approach and parameterize suture geometries to utilize geometric connections, rather than new engineering materials, to absorb high-impact loads. This study builds upon our work that investigated the effects of the dovetail suture contact angle, tangent length, and tab radius on the stiffness and toughness of an archway structure using finite element analysis.
View Article and Find Full Text PDFMany animals have protective anatomical structures that allow for growth and flexibility; these structures contain thin seams called sutures that help the structure to absorb impacts. In this study, we parameterized the stiffness and toughness of a curved archway structure based on three geometric properties of a suture through finite element, quasi-static, three-point bending simulations. Each archway consisted of two symmetric pieces linked by a dovetail suture tab design.
View Article and Find Full Text PDFPast concussion studies have focused on understanding the injury processes occurring on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and strains, or injury-induced cellular pathology).
View Article and Find Full Text PDFA detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy.
View Article and Find Full Text PDFViral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent years, a broader approach to study the mechanics of viral capsids has leveraged the theoretical tools proper of continuum mechanics.
View Article and Find Full Text PDFEnveloped viruses attach to host cells by binding to receptors on the cell surface. For many viruses, entry occurs via membrane fusion after a sufficient number of receptors have engaged ligand proteins on the virion. Under conditions where the cell surface receptor densities are low, recruitment of receptors may be limited by diffusion rather than by receptor-ligand interactions.
View Article and Find Full Text PDFA series of recent nanoindentation experiments on the protein shells (capsids) of viruses has established atomic force microscopy (AFM) as a useful framework for probing the mechanics of large protein assemblies. Specifically these experiments provide an opportunity to study the coupling of the global assembly response to local conformational changes. AFM experiments on cowpea chlorotic mottle virus, known to undergo a pH-controlled swelling conformational change, have revealed a pH-dependent mechanical response.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2007
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage phi29 .
View Article and Find Full Text PDF