Captive rearing programs (hatcheries) are often used in conservation and management efforts for at-risk salmonid fish populations. However, hatcheries typically rear juveniles in environments that contrast starkly with natural conditions, which may lead to phenotypic and/or genetic changes that adversely affect the performance of juveniles upon their release to the wild. Environmental enrichment has been proposed as a mechanism to improve the efficacy of population restoration efforts from captive-rearing programs; in this study, we examine the influence of environmental enrichment during embryo and yolk-sac larval rearing on the transcriptome of Atlantic salmon (Salmo salar).
View Article and Find Full Text PDFReplicated adaptive radiation events, typified by phenotypic divergence across resource axes, provide important insight into the eco-evolutionary dynamics that lead to the formation of new species. Here, we show that in trimorphic adaptive radiations of European whitefish (Coregonus lavaretus), divergence of the oxygen transport system has occurred across the pelagic/littoral (shallow)-profundal (deep) resource axis, and at multiple biological scales. Profundal whitefish exhibited significantly larger red blood cells (RBCs), a greater proportion of cathodic hemoglobin protein components, and higher hemoglobin transcript abundance in kidney compared to littoral and pelagic morphs.
View Article and Find Full Text PDFParallel adaptive radiation events provide a powerful framework for investigations of ecology's contribution to phenotypic diversification. Ecologically driven divergence has been invoked to explain the repeated evolution of sympatric dwarf and normal lake whitefish (Coregonus clupeaformis) species in multiple lakes in eastern North America. Nevertheless, links between most putatively adaptive traits and ecological variation remain poorly defined within and among whitefish species pairs.
View Article and Find Full Text PDFIn North America, populations of lake whitefish (Coregonus clupeaformis) have evolved sympatric 'dwarf' and 'normal' ecotypes that are associated with distinct trophic niches within lakes. Trophic specialization should place diverging physiological demands on individuals, and thus, genes and phenotypes associated with energy production represent ideal candidates for studies of adaptation. Here, we test for the parallel divergence of traits involved in oxygen transport in dwarf and normal lake whitefish from Québec, Canada and Maine, USA.
View Article and Find Full Text PDFMajor histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study.
View Article and Find Full Text PDFDespite growing evidence for parasite-mediated selection on the vertebrate major histocompatibility complex (MHC), little is known about variation in the bacterial parasite community within and among host populations or its influence on MHC evolution. In this study, we characterize variation in the parasitic bacterial community associated with Chinook salmon (Oncorhynchus tshawytscha) fry in five populations in British Columbia (BC), Canada across 2 years, and examine whether bacterial infections are a potential source of selection on the MHC. We found an unprecedented diversity of bacteria infecting fry with a total of 55 unique bacteria identified.
View Article and Find Full Text PDF